Suppr超能文献

癫痫监测病房中多模态惊厥发作检测可穿戴系统对儿童和成人患者的前瞻性研究。

Prospective Study of a Multimodal Convulsive Seizure Detection Wearable System on Pediatric and Adult Patients in the Epilepsy Monitoring Unit.

作者信息

Onorati Francesco, Regalia Giulia, Caborni Chiara, LaFrance W Curt, Blum Andrew S, Bidwell Jonathan, De Liso Paola, El Atrache Rima, Loddenkemper Tobias, Mohammadpour-Touserkani Fatemeh, Sarkis Rani A, Friedman Daniel, Jeschke Jay, Picard Rosalind

机构信息

Empatica, Inc., Boston, MA, United States.

Division of Neuropsychiatry and Behavioral Neurology, Rhode Island Hospital, Brown University, Providence, RI, United States.

出版信息

Front Neurol. 2021 Aug 18;12:724904. doi: 10.3389/fneur.2021.724904. eCollection 2021.

Abstract

Using machine learning to combine wrist accelerometer (ACM) and electrodermal activity (EDA) has been shown effective to detect primarily and secondarily generalized tonic-clonic seizures, here termed as convulsive seizures (CS). A prospective study was conducted for the FDA clearance of an ACM and EDA-based CS-detection device based on a predefined machine learning algorithm. Here we present its performance on pediatric and adult patients in epilepsy monitoring units (EMUs). Patients diagnosed with epilepsy participated in a prospective multi-center clinical study. Three board-certified neurologists independently labeled CS from video-EEG. The Detection Algorithm was evaluated in terms of Sensitivity and false alarm rate per 24 h-worn (FAR) on all the data and on only periods of rest. Performance were analyzed also applying the Detection Algorithm offline, with a less sensitive but more specific parameters configuration ("Active mode"). Data from 152 patients (429 days) were used for performance evaluation (85 pediatric aged 6-20 years, and 67 adult aged 21-63 years). Thirty-six patients (18 pediatric) experienced a total of 66 CS (35 pediatric). The Sensitivity (corrected for clustered data) was 0.92, with a 95% confidence interval (CI) of [0.85-1.00] for the pediatric population, not significantly different ( > 0.05) from the adult population's Sensitivity (0.94, CI: [0.89-1.00]). The FAR on the pediatric population was 1.26 (CI: [0.87-1.73]), higher ( < 0.001) than in the adult population (0.57, CI: [0.36-0.81]). Using the Active mode, the FAR decreased by 68% while reducing Sensitivity to 0.95 across the population. During rest periods, the FAR's were 0 for all patients, lower than during activity periods ( < 0.001). Performance complies with FDA's requirements of a lower bound of CI for Sensitivity higher than 0.7 and of a FAR lower than 2, for both age groups. The pediatric FAR was higher than the adult FAR, likely due to higher pediatric activity. The high Sensitivity and precision (having no false alarms) during sleep might help mitigate SUDEP risk by summoning caregiver intervention. The Active mode may be advantageous for some patients, reducing the impact of the FAR on daily life. Future work will examine the performance and usability outside of EMUs.

摘要

利用机器学习结合腕部加速度计(ACM)和皮肤电活动(EDA)已被证明可有效检测原发性和继发性全身性强直阵挛发作,在此称为惊厥性发作(CS)。基于预定义的机器学习算法,针对一种基于ACM和EDA的CS检测设备进行了前瞻性研究以获得美国食品药品监督管理局(FDA)的批准。在此,我们展示了其在癫痫监测单元(EMU)中对儿科和成年患者的性能。被诊断患有癫痫的患者参与了一项前瞻性多中心临床研究。三位具有董事会认证的神经科医生独立从视频脑电图中标记出CS。根据每佩戴24小时的灵敏度和误报率(FAR),在所有数据以及仅在休息时段对检测算法进行评估。还离线应用检测算法,采用灵敏度较低但特异性更高的参数配置(“活动模式”)来分析性能。来自152名患者(429天)的数据用于性能评估(85名6至20岁的儿科患者和67名21至63岁的成年患者)。三十六名患者(18名儿科患者)共经历了66次CS(35次儿科CS)。儿科人群的灵敏度(针对聚类数据进行校正)为0.92,95%置信区间(CI)为[0.85 - 1.00],与成年人群的灵敏度(0.94,CI:[0.89 - 1.00])无显著差异(> 0.05)。儿科人群的FAR为1.26(CI:[0.87 - 1.73]),高于成年人群(0.57,CI:[0.36 - 0.81])(< 0.001)。使用活动模式时,FAR降低了68%,同时人群中的灵敏度降至0.95。在休息时段,所有患者的FAR均为0,低于活动时段(< 0.001)。对于两个年龄组,性能均符合FDA对灵敏度CI下限高于0.7且FAR低于2的要求。儿科FAR高于成年FAR,可能是由于儿科患者活动量更大。睡眠期间的高灵敏度和高精度(无误报)可能通过促使护理人员干预来帮助降低癫痫性猝死(SUDEP)风险。活动模式可能对某些患者有利,减少FAR对日常生活的影响。未来的工作将研究该设备在EMU之外的性能和可用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906a/8418082/d9a25c5b44e0/fneur-12-724904-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验