Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.
Magn Reson Med. 2022 Feb;87(2):915-931. doi: 10.1002/mrm.29000. Epub 2021 Sep 7.
The decomposition of multi-exponential decay data into a T spectrum poses substantial challenges for conventional fitting algorithms, including non-negative least squares (NNLS). Based on a combination of the resolution limit constraint and machine learning neural network algorithm, a data-driven and highly tailorable analysis method named spectrum analysis for multiple exponentials via experimental condition oriented simulation (SAME-ECOS) was proposed.
The theory of SAME-ECOS was derived. Then, a paradigm was presented to demonstrate the SAME-ECOS workflow, consisting of a series of calculation, simulation, and model training operations. The performance of the trained SAME-ECOS model was evaluated using simulations and six in vivo brain datasets. The code is available at https://github.com/hanwencat/SAME-ECOS.
Using NNLS as the baseline, SAME-ECOS achieved over 15% higher overall cosine similarity scores in producing the T spectrum, and more than 10% lower mean absolute error in calculating the myelin water fraction (MWF), as well as demonstrated better robustness to noise in the simulation tests. Applying to in vivo data, MWF from SAME-ECOS and NNLS was highly correlated among all study participants. However, a distinct separation of the myelin water peak and the intra/extra-cellular water peak was only observed in the mean T spectra determined using SAME-ECOS. In terms of data processing speed, SAME-ECOS is approximately 30 times faster than NNLS, achieving a whole-brain analysis in 3 min.
Compared with NNLS, the SAME-ECOS method yields much more reliable T spectra in a dramatically shorter time, increasing the feasibility of multi-component T decay analysis in clinical settings.
多指数衰减数据的 T 谱分解对传统拟合算法(包括非负最小二乘法(NNLS))提出了巨大挑战。基于分辨率限制约束和机器学习神经网络算法的结合,提出了一种数据驱动、高度可定制的分析方法,名为通过实验条件导向模拟(SAME-ECOS)进行的多指数谱分析。
推导了 SAME-ECOS 的理论。然后,提出了一个范例来演示 SAME-ECOS 工作流程,包括一系列计算、模拟和模型训练操作。使用模拟和六个体内脑数据集评估了训练后的 SAME-ECOS 模型的性能。代码可在 https://github.com/hanwencat/SAME-ECOS 上获得。
以 NNLS 为基线,SAME-ECOS 在生成 T 谱方面的总体余弦相似性得分提高了 15%以上,在计算髓鞘水分数(MWF)方面的平均绝对误差降低了 10%以上,并且在模拟测试中表现出更好的抗噪能力。在体内数据中,所有研究参与者的 SAME-ECOS 和 NNLS 的 MWF 之间高度相关。然而,仅在使用 SAME-ECOS 确定的平均 T 谱中观察到髓鞘水峰和细胞内/细胞外水峰的明显分离。在数据处理速度方面,SAME-ECOS 比 NNLS 快约 30 倍,可在 3 分钟内完成全脑分析。
与 NNLS 相比,SAME-ECOS 方法在更短的时间内产生了更可靠的 T 谱,增加了在临床环境中进行多分量 T 衰减分析的可行性。