Suppr超能文献

基于树的分步调整强化学习在使用测试和治疗观察数据评估嵌套动态治疗方案中的应用。

Step-adjusted tree-based reinforcement learning for evaluating nested dynamic treatment regimes using test-and-treat observational data.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.

The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Stat Med. 2021 Nov 30;40(27):6164-6177. doi: 10.1002/sim.9177. Epub 2021 Sep 7.

Abstract

Dynamic treatment regimes (DTRs) include a sequence of treatment decision rules, in which treatment is adapted over time in response to the changes in an individual's disease progression and health care history. In medical practice, nested test-and-treat strategies are common to improve cost-effectiveness. For example, for patients at risk of prostate cancer, only patients who have high prostate-specific antigen (PSA) need a biopsy, which is costly and invasive, to confirm the diagnosis and help determine the treatment if needed. A decision about treatment happens after the biopsy, and is thus nested within the decision of whether to do the test. However, current existing statistical methods are not able to accommodate such a naturally embedded property of the treatment decision within the test decision. Therefore, we developed a new statistical learning method, step-adjusted tree-based reinforcement learning, to evaluate DTRs within such a nested multistage dynamic decision framework using observational data. At each step within each stage, we combined the robust semiparametric estimation via augmented inverse probability weighting with a tree-based reinforcement learning method to deal with the counterfactual optimization. The simulation studies demonstrated robust performance of the proposed methods under different scenarios. We further applied our method to evaluate the necessity of prostate biopsy and identify the optimal test-and-treat regimes for prostate cancer patients using data from the Johns Hopkins University prostate cancer active surveillance dataset.

摘要

动态治疗方案(DTR)包括一系列治疗决策规则,其中治疗会随着个体疾病进展和医疗史的变化而进行调整。在医疗实践中,嵌套式测试和治疗策略常用于提高成本效益。例如,对于有前列腺癌风险的患者,只有前列腺特异性抗原(PSA)较高的患者需要进行活检来确诊,并在必要时帮助确定治疗方案,而活检既昂贵又具侵入性。治疗决策是在活检后做出的,因此嵌套在是否进行测试的决策中。然而,当前现有的统计方法无法适应测试决策中治疗决策的这种自然嵌入特性。因此,我们开发了一种新的统计学习方法,即逐步调整基于树的强化学习,以使用观察数据在这种嵌套的多阶段动态决策框架内评估 DTR。在每个阶段的每个步骤中,我们将增强逆概率加权的稳健半参数估计与基于树的强化学习方法相结合,以处理反事实优化问题。模拟研究表明,在不同情况下,所提出的方法具有稳健的性能。我们进一步应用我们的方法来评估前列腺活检的必要性,并使用约翰霍普金斯大学前列腺癌主动监测数据集来确定前列腺癌患者的最佳测试和治疗方案。

相似文献

2
TREE-BASED REINFORCEMENT LEARNING FOR ESTIMATING OPTIMAL DYNAMIC TREATMENT REGIMES.
Ann Appl Stat. 2018 Sep;12(3):1914-1938. doi: 10.1214/18-AOAS1137. Epub 2018 Sep 11.
4
Restricted sub-tree learning to estimate an optimal dynamic treatment regime using observational data.
Stat Med. 2021 Nov 20;40(26):5796-5812. doi: 10.1002/sim.9155. Epub 2021 Aug 2.
5
Imputation-based Q-learning for optimizing dynamic treatment regimes with right-censored survival outcome.
Biometrics. 2023 Dec;79(4):3676-3689. doi: 10.1111/biom.13872. Epub 2023 May 17.
6
Penalized Spline-Involved Tree-based (PenSIT) Learning for estimating an optimal dynamic treatment regime using observational data.
Stat Methods Med Res. 2022 Dec;31(12):2338-2351. doi: 10.1177/09622802221122397. Epub 2022 Oct 3.
7
Estimating tree-based dynamic treatment regimes using observational data with restricted treatment sequences.
Biometrics. 2023 Sep;79(3):2260-2271. doi: 10.1111/biom.13754. Epub 2022 Oct 9.
8
Learning the Dynamic Treatment Regimes from Medical Registry Data through Deep Q-network.
Sci Rep. 2019 Feb 6;9(1):1495. doi: 10.1038/s41598-018-37142-0.
9
Optimal dynamic treatment regime estimation using information extraction from unstructured clinical text.
Biom J. 2022 Apr;64(4):805-817. doi: 10.1002/bimj.202100077. Epub 2022 Feb 3.
10
Optimization of multi-stage dynamic treatment regimes utilizing accumulated data.
Stat Med. 2015 Nov 20;34(26):3424-43. doi: 10.1002/sim.6558. Epub 2015 Jun 21.

本文引用的文献

1
TREE-BASED REINFORCEMENT LEARNING FOR ESTIMATING OPTIMAL DYNAMIC TREATMENT REGIMES.
Ann Appl Stat. 2018 Sep;12(3):1914-1938. doi: 10.1214/18-AOAS1137. Epub 2018 Sep 11.
2
Optimizing Prostate Cancer Surveillance: Using Data-driven Models for Informed Decision-making.
Eur Urol. 2019 Jun;75(6):918-919. doi: 10.1016/j.eururo.2018.12.006. Epub 2018 Dec 19.
3
HIGH-DIMENSIONAL A-LEARNING FOR OPTIMAL DYNAMIC TREATMENT REGIMES.
Ann Stat. 2018 Jun;46(3):925-957. doi: 10.1214/17-AOS1570. Epub 2018 May 3.
6
Adaptive contrast weighted learning for multi-stage multi-treatment decision-making.
Biometrics. 2017 Mar;73(1):145-155. doi: 10.1111/biom.12539. Epub 2016 May 23.
7
New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes.
J Am Stat Assoc. 2015;110(510):583-598. doi: 10.1080/01621459.2014.937488.
8
Optimization of multi-stage dynamic treatment regimes utilizing accumulated data.
Stat Med. 2015 Nov 20;34(26):3424-43. doi: 10.1002/sim.6558. Epub 2015 Jun 21.
9
Dynamic Treatment Regimes.
Annu Rev Stat Appl. 2014;1:447-464. doi: 10.1146/annurev-statistics-022513-115553.
10
Prostate cancer: measuring PSA.
Intern Med J. 2014 May;44(5):433-40. doi: 10.1111/imj.12407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验