Zhao Ying-Qi, Zeng Donglin, Laber Eric B, Kosorok Michael R
Assistant Professor, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53792.
Professor, Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599.
J Am Stat Assoc. 2015;110(510):583-598. doi: 10.1080/01621459.2014.937488.
Dynamic treatment regimes (DTRs) are sequential decision rules for individual patients that can adapt over time to an evolving illness. The goal is to accommodate heterogeneity among patients and find the DTR which will produce the best long term outcome if implemented. We introduce two new statistical learning methods for estimating the optimal DTR, termed backward outcome weighted learning (BOWL), and simultaneous outcome weighted learning (SOWL). These approaches convert individualized treatment selection into an either sequential or simultaneous classification problem, and can thus be applied by modifying existing machine learning techniques. The proposed methods are based on directly maximizing over all DTRs a nonparametric estimator of the expected long-term outcome; this is fundamentally different than regression-based methods, for example -learning, which indirectly attempt such maximization and rely heavily on the correctness of postulated regression models. We prove that the resulting rules are consistent, and provide finite sample bounds for the errors using the estimated rules. Simulation results suggest the proposed methods produce superior DTRs compared with -learning especially in small samples. We illustrate the methods using data from a clinical trial for smoking cessation.
动态治疗方案(DTRs)是针对个体患者的序贯决策规则,可随时间适应不断演变的疾病。目标是适应患者之间的异质性,并找到如果实施将产生最佳长期结果的DTR。我们引入了两种新的统计学习方法来估计最优DTR,称为反向结果加权学习(BOWL)和同步结果加权学习(SOWL)。这些方法将个体化治疗选择转化为序贯或同步分类问题,因此可以通过修改现有的机器学习技术来应用。所提出的方法基于在所有DTR上直接最大化预期长期结果的非参数估计器;这与基于回归的方法(例如学习)有根本不同,基于回归的方法间接尝试这种最大化并且严重依赖于假设回归模型的正确性。我们证明所得规则是一致的,并使用估计规则为误差提供有限样本界限。模拟结果表明,与学习相比,所提出的方法产生了更优的DTR,特别是在小样本中。我们使用戒烟临床试验的数据来说明这些方法。