Kousseff Christina J, Halaksa Roman, Parr Zachary S, Nielsen Christian B
Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
Chem Rev. 2022 Feb 23;122(4):4397-4419. doi: 10.1021/acs.chemrev.1c00314. Epub 2021 Sep 7.
Small-molecule organic semiconductors have displayed remarkable electronic properties with a multitude of π-conjugated structures developed and fine-tuned over recent years to afford highly efficient hole- and electron-transporting materials. Already making a significant impact on organic electronic applications including organic field-effect transistors and solar cells, this class of materials is also now naturally being considered for the emerging field of organic bioelectronics. In efforts aimed at identifying and developing (semi)conducting materials for bioelectronic applications, particular attention has been placed on materials displaying mixed ionic and electronic conduction to interface efficiently with the inherently ionic biological world. Such mixed conductors are conveniently evaluated using an organic electrochemical transistor, which further presents itself as an ideal bioelectronic device for transducing biological signals into electrical signals. Here, we review recent literature relevant for the design of small-molecule mixed ionic and electronic conductors. We assess important classes of p- and n-type small-molecule semiconductors, consider structural modifications relevant for mixed conduction and for specific interactions with ionic species, and discuss the outlook of small-molecule semiconductors in the context of organic bioelectronics.
近年来,随着大量π共轭结构的开发和微调,小分子有机半导体展现出了卓越的电子特性,从而能够提供高效的空穴传输和电子传输材料。这类材料已经对包括有机场效应晶体管和太阳能电池在内的有机电子应用产生了重大影响,如今在有机生物电子学这一新兴领域也自然受到了关注。在致力于识别和开发用于生物电子应用的(半)导体材料的过程中,人们特别关注那些显示出混合离子传导和电子传导特性、能够与本质上呈离子性的生物世界有效界面的材料。使用有机电化学晶体管可以方便地评估这类混合导体,而有机电化学晶体管本身也是一种将生物信号转换为电信号的理想生物电子器件。在此,我们回顾了与小分子混合离子导体和电子导体设计相关的近期文献。我们评估了重要的p型和n型小分子半导体类别,考虑了与混合传导以及与离子物种的特定相互作用相关的结构修饰,并在有机生物电子学的背景下讨论了小分子半导体的前景。