Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, Korea.
Nano Lett. 2021 Sep 22;21(18):7815-7822. doi: 10.1021/acs.nanolett.1c02799. Epub 2021 Sep 7.
Chemical etching can create novel structures inaccessible by growth and provide complementary understanding on the growth mechanisms of complex nanostructures. Screw dislocation-driven growth influences the layer stackings of transition metal dichalcogenides (MX) resulting in complex spiral morphologies. Herein, we experimentally and theoretically study the etching of screw dislocated WS and WSe nanostructures using HO etchant. The kinetic Wulff constructions and Monte Carlo simulations establish the etching principles of single MX layers. Atomic force microscopy characterization reveals diverse etching morphology evolution behaviors around the dislocation cores and along the exterior edges, including triangular, hexagonal, or truncated hexagonal holes and smooth or rough edges. These behaviors are influenced by the edge orientations, layer stackings, and the strain of screw dislocations. calculation and kinetic Monte Carlo simulations support the experimental observations and provide further mechanistic insights. This knowledge can help one to understand more complex structures created by screw dislocations through etching.
化学刻蚀可以创造出通过生长无法获得的新颖结构,并为复杂纳米结构的生长机制提供互补性的理解。螺旋位错驱动的生长影响过渡金属二卤化物(MX)的层堆积,导致复杂的螺旋形态。在此,我们使用 HO 蚀刻剂实验和理论研究了螺旋位错 WS 和 WSe 纳米结构的刻蚀。动力学 Wulff 结构和蒙特卡罗模拟建立了单层 MX 的刻蚀原理。原子力显微镜的特性揭示了在位错核心周围和外部边缘处的不同刻蚀形态演变行为,包括三角形、六边形或截顶六边形孔以及光滑或粗糙边缘。这些行为受到边缘取向、层堆积和螺旋位错应变的影响。计算和动力学蒙特卡罗模拟支持实验观察并提供了进一步的机制见解。这一知识可以帮助人们通过刻蚀来理解由螺旋位错产生的更复杂结构。