Madoune Yassine, Yang DingBang, Ahmed Yameen, Al-Makeen Mansour M, Huang Han
Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China.
Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada.
Front Chem. 2023 Mar 3;11:1132567. doi: 10.3389/fchem.2023.1132567. eCollection 2023.
Atomically thin layered transition metal dichalcogenides (TMDs), such as MoS and WS, have been getting much attention recently due to their interesting electronic and optoelectronic properties. Especially, spiral TMDs provide a variety of candidates for examining the light-matter interaction resulting from the broken inversion symmetry, as well as the potential new utilization in functional optoelectronic, electromagnetic and nanoelectronics devices. To realize their potential device applications, it is desirable to achieve controlled growth of these layered nanomaterials with a tunable stacking. Here, we demonstrate the Physical Vapor Deposition (PVD) growth of spiral pyramid-shaped WS with ∼200 in size and the interesting optical properties AFM and Raman spectroscopy. By controlling the precursors concentration and changing the initial nucleation rates in PVD growth, WS in different nanoarchitectures can be obtained. We discuss the growth mechanism for these spiral-patterned WS nanostructures based on the screw dislocations. This study provides a simple, scalable approach of screw dislocation-driven (SDD) growth of distinct TMD nanostructures with varying morphologies, and stacking.
原子级薄的层状过渡金属二硫属化物(TMDs),如MoS和WS,由于其有趣的电子和光电特性,近年来备受关注。特别是,螺旋状TMDs为研究由反演对称性破缺引起的光与物质相互作用,以及在功能性光电器件、电磁器件和纳米电子器件中的潜在新应用提供了多种候选材料。为了实现它们在潜在器件中的应用,期望能够实现这些具有可调堆叠结构的层状纳米材料的可控生长。在此,我们展示了通过物理气相沉积(PVD)生长尺寸约为200 的螺旋金字塔形WS及其有趣的光学性质,利用原子力显微镜(AFM)和拉曼光谱进行了表征。通过控制PVD生长过程中的前驱体浓度并改变初始成核速率,可以获得不同纳米结构的WS。我们基于螺旋位错讨论了这些螺旋图案化WS纳米结构的生长机制。本研究提供了一种简单、可扩展的方法,用于通过螺旋位错驱动(SDD)生长具有不同形态和堆叠结构的独特TMD纳米结构。