Suppr超能文献

位错 WS 螺旋的可控生长和形成机制。

Controllable Growth and Formation Mechanisms of Dislocated WS Spirals.

机构信息

Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering , Hunan University , Changsha 410082 , China.

Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States.

出版信息

Nano Lett. 2018 Jun 13;18(6):3885-3892. doi: 10.1021/acs.nanolett.8b01210. Epub 2018 May 18.

Abstract

Two-dimensional (2D) layered metal dichalcogenides can form spiral nanostructures by a screw-dislocation-driven mechanism, which leads to changes in crystal symmetry and layer stackings that introduce attractive physical properties different from their bulk and few-layer nanostructures. However, controllable growth of spirals is challenging and their growth mechanisms are poorly understood. Here, we report the controllable growth of WS spiral nanoplates with different stackings by a vapor phase deposition route and investigate their formation mechanisms by combining atomic force microscopy with second harmonic generation imaging. Previously not observed "spiral arm" features could be explained as covered dislocation spiral steps, and the number of spiral arms correlates with the number of screw dislocations initiated at the bottom plane. The supersaturation-dependent growth can generate new screw dislocations from the existing layers, or even new layers templated by existing screw dislocations. Different number of dislocations and orientation of new layers result in distinct morphologies, different layer stackings, and more complex nanostructures, such as triangular spiral nanoplates with hexagonal spiral pattern on top. This work provides the understanding and control of dislocation-driven growth of 2D nanostructures. These spiral nanostructures offer diverse candidates for probing the physical properties of layered materials and exploring new applications in functional nanoelectronic and optoelectronic devices.

摘要

二维(2D)层状金属二卤化物可以通过螺旋位错驱动机制形成螺旋纳米结构,这导致晶体对称性和层堆积的变化,引入了与体相和少层纳米结构不同的有吸引力的物理性质。然而,可控的螺旋生长具有挑战性,其生长机制也知之甚少。在这里,我们通过气相沉积法报告了具有不同堆叠方式的 WS 螺旋纳米板的可控生长,并通过原子力显微镜与二次谐波产生成像相结合,研究了它们的形成机制。以前没有观察到的“螺旋臂”特征可以解释为覆盖位错螺旋台阶,并且螺旋臂的数量与在底部平面上起始的螺旋位错的数量相关。过饱和度依赖的生长可以从现有层中产生新的螺旋位错,甚至可以由现有螺旋位错模板化新的层。不同数量的位错和新层的取向导致不同的形貌、不同的层堆叠以及更复杂的纳米结构,例如顶部具有六边形螺旋图案的三角形螺旋纳米板。这项工作提供了对二维纳米结构的位错驱动生长的理解和控制。这些螺旋纳米结构为探测层状材料的物理性质以及探索在功能性纳米电子和光电子器件中的新应用提供了多样化的候选对象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验