Zinta Gaurav, Singh Rajesh Kumar, Kumar Rajiv
Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
Front Genet. 2022 Aug 25;13:909007. doi: 10.3389/fgene.2022.909007. eCollection 2022.
Cold stress adversely affects plant growth, development, and yield. Also, the spatial and geographical distribution of plant species is influenced by low temperatures. Cold stress includes chilling and/or freezing temperatures, which trigger entirely different plant responses. Freezing tolerance is acquired via the cold acclimation process, which involves prior exposure to non-lethal low temperatures followed by profound alterations in cell membrane rigidity, transcriptome, compatible solutes, pigments and cold-responsive proteins such as antifreeze proteins. Moreover, epigenetic mechanisms such as DNA methylation, histone modifications, chromatin dynamics and small non-coding RNAs play a crucial role in cold stress adaptation. Here, we provide a recent update on cold-induced signaling and regulatory mechanisms. Emphasis is given to the role of epigenetic mechanisms and antifreeze proteins in imparting cold stress tolerance in plants. Lastly, we discuss genetic manipulation strategies to improve cold tolerance and develop cold-resistant plants.
冷胁迫对植物的生长、发育和产量产生不利影响。此外,植物物种的空间和地理分布也受低温影响。冷胁迫包括冷害温度和/或冻害温度,它们会引发植物完全不同的反应。植物通过低温驯化过程获得抗冻能力,该过程包括预先暴露于非致死低温,随后细胞膜刚性、转录组、相容性溶质、色素以及诸如抗冻蛋白等冷响应蛋白发生深刻变化。此外,DNA甲基化、组蛋白修饰、染色质动态变化和小非编码RNA等表观遗传机制在冷胁迫适应中发挥关键作用。在此,我们提供了关于冷诱导信号传导和调控机制的最新进展。重点阐述了表观遗传机制和抗冻蛋白在赋予植物冷胁迫耐受性方面的作用。最后,我们讨论了提高耐寒性和培育抗寒植物的基因操作策略。