Suppr超能文献

生物转化解毒在丙酮、2-丁酮和2-己酮增强氯仿诱导的肝毒性中的作用。

The role of biotransformation-detoxication in acetone-, 2-butanone-, and 2-hexanone-potentiated chloroform-induced hepatotoxicity.

作者信息

Hewitt L A, Valiquette C, Plaa G L

机构信息

Département de pharmacologie, Faculté de médecine, Université de Montréal, Québec, Canada.

出版信息

Can J Physiol Pharmacol. 1987 Nov;65(11):2313-8. doi: 10.1139/y87-367.

Abstract

The hepatotoxicity of chloroform (CHCl3) is thought to require biotransformation, by the polysubstrate monooxygenase system (P-450), to a reactive intermediate(s). Therefore, the potentiation of CHCl3-induced hepatotoxicity, which occurs following exposure to certain ketones, may hypothetically be explained by a reduced capacity of the cell to form glutathione conjugates (detoxicate the intermediate) and (or) by an increased rate of reactive intermediate(s) generation secondary to a modification of the P-450 system. To test these hypotheses, liver damage, as indicated by elevation in plasma alanine aminotransferase and ornithine carbamyl transferase activities, was modulated in male Sprague-Dawley rats by varying the time interval (10, 18, 24, 48, 72, 96 h) between acetone, 2-butanone, or 2-hexanone (15 mmol/kg, p.o.) pretreatment and CHCl3 (0.5 mL/kg, p.o.) administration. These data were compared with hepatic glutathione and with various parameters of the polysubstrate monooxygenase system: cytochrome P-450, cytochrome c reductase, cytochrome b5, and microsomal binding of 14CHCl3-derived radiolabel. Reduced detoxication capacity does not appear to be involved as hepatic glutathione levels were not reduced. Globally, a relationship between modifications to the polysubstrate monooxygenase system and potentiation of CHCl3-induced hepatotoxicity appears to exist. The rank order of each ketone's ability to modify P-450 parameters was the same in most instances as that based on peak ability to potentiate CHCl3-induced hepatotoxicity: 2-hexanone greater than 2-butanone greater than or equal to acetone. Therefore, these results suggest that a general relationship exists between the ketone-induced potentiation of CHCl3-induced hepatotoxicity and increased CHCl3 reactive metabolite generation. However, other factors may also contribute to the phenomenon.

摘要

氯仿(CHCl₃)的肝毒性被认为需要通过多底物单加氧酶系统(P - 450)生物转化为一种反应性中间体。因此,在接触某些酮类后出现的氯仿诱导的肝毒性增强,从理论上可能解释为细胞形成谷胱甘肽结合物(使中间体解毒)的能力降低和(或)由于P - 450系统改变导致反应性中间体生成速率增加。为了验证这些假设,通过改变丙酮、2 - 丁酮或2 - 己酮(15 mmol/kg,口服)预处理与氯仿(0.5 mL/kg,口服)给药之间的时间间隔(10、18、24、48、72、96小时),调节雄性Sprague - Dawley大鼠的肝损伤,肝损伤通过血浆丙氨酸氨基转移酶和鸟氨酸氨甲酰转移酶活性升高来指示。将这些数据与肝谷胱甘肽以及多底物单加氧酶系统的各种参数进行比较:细胞色素P - 450、细胞色素c还原酶、细胞色素b5以及源自¹⁴CHCl₃的放射性标记物的微粒体结合。由于肝谷胱甘肽水平未降低,似乎不涉及解毒能力降低。总体而言,多底物单加氧酶系统的改变与氯仿诱导的肝毒性增强之间似乎存在关联。在大多数情况下,每种酮类改变P - 450参数的能力排序与基于增强氯仿诱导的肝毒性的峰值能力的排序相同:2 - 己酮大于2 - 丁酮大于或等于丙酮。因此,这些结果表明,酮类诱导的氯仿诱导的肝毒性增强与氯仿反应性代谢物生成增加之间存在普遍关系。然而,其他因素也可能导致这种现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验