文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微生物痕迹:改造分子流行病学以快速应对公共卫生事件。

MicrobeTrace: Retooling molecular epidemiology for rapid public health response.

机构信息

Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.

Northrup Grumman, Atlanta, Georgia, United States of America.

出版信息

PLoS Comput Biol. 2021 Sep 7;17(9):e1009300. doi: 10.1371/journal.pcbi.1009300. eCollection 2021 Sep.


DOI:10.1371/journal.pcbi.1009300
PMID:34492010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8491948/
Abstract

Outbreak investigations use data from interviews, healthcare providers, laboratories and surveillance systems. However, integrated use of data from multiple sources requires a patchwork of software that present challenges in usability, interoperability, confidentiality, and cost. Rapid integration, visualization and analysis of data from multiple sources can guide effective public health interventions. We developed MicrobeTrace to facilitate rapid public health responses by overcoming barriers to data integration and exploration in molecular epidemiology. MicrobeTrace is a web-based, client-side, JavaScript application (https://microbetrace.cdc.gov) that runs in Chromium-based browsers and remains fully operational without an internet connection. Using publicly available data, we demonstrate the analysis of viral genetic distance networks and introduce a novel approach to minimum spanning trees that simplifies results. We also illustrate the potential utility of MicrobeTrace in support of contact tracing by analyzing and displaying data from an outbreak of SARS-CoV-2 in South Korea in early 2020. MicrobeTrace is developed and actively maintained by the Centers for Disease Control and Prevention. Users can email microbetrace@cdc.gov for support. The source code is available at https://github.com/cdcgov/microbetrace.

摘要

暴发调查利用来自访谈、医疗保健提供者、实验室和监测系统的数据。然而,多源数据的综合利用需要使用各种软件,这在可用性、互操作性、保密性和成本方面带来了挑战。快速整合、可视化和分析来自多个来源的数据可以指导有效的公共卫生干预措施。我们开发了 MicrobeTrace,通过克服分子流行病学中数据集成和探索的障碍,促进快速的公共卫生应对。MicrobeTrace 是一个基于网络的、客户端的、基于 JavaScript 的应用程序(https://microbetrace.cdc.gov),它在基于 Chromium 的浏览器中运行,并且在没有互联网连接的情况下仍然可以完全运行。我们使用公开可用的数据演示了病毒遗传距离网络的分析,并引入了一种新的最小生成树方法,简化了结果。我们还通过分析和显示 2020 年初韩国 SARS-CoV-2 暴发的数据,说明了 MicrobeTrace 在支持接触者追踪方面的潜在效用。MicrobeTrace 由疾病控制和预防中心开发和积极维护。用户可以通过电子邮件 microbetrace@cdc.gov 获得支持。源代码可在 https://github.com/cdcgov/microbetrace 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/f5de36cb62b9/pcbi.1009300.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/61f706c50814/pcbi.1009300.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/170b33eea985/pcbi.1009300.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/58f46ac76a50/pcbi.1009300.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/85d80e7c21e0/pcbi.1009300.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/f5de36cb62b9/pcbi.1009300.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/61f706c50814/pcbi.1009300.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/170b33eea985/pcbi.1009300.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/58f46ac76a50/pcbi.1009300.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/85d80e7c21e0/pcbi.1009300.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ca/8491948/f5de36cb62b9/pcbi.1009300.g005.jpg

相似文献

[1]
MicrobeTrace: Retooling molecular epidemiology for rapid public health response.

PLoS Comput Biol. 2021-9

[2]
HantaNet: A New MicrobeTrace Application for Hantavirus Classification, Genomic Surveillance, Epidemiology and Outbreak Investigations.

Viruses. 2023-11-2

[3]
Visualization and analytics tools for infectious disease epidemiology: a systematic review.

J Biomed Inform. 2014-10

[4]
Malaria Surveillance - United States, 2016.

MMWR Surveill Summ. 2019-5-17

[5]
Investigations of Possible Multistate Outbreaks of Salmonella, Shiga Toxin-Producing Escherichia coli, and Listeria monocytogenes Infections - United States, 2016.

MMWR Surveill Summ. 2020-11-13

[6]
epiPATH: an information system for the storage and management of molecular epidemiology data from infectious pathogens.

BMC Infect Dis. 2007-4-20

[7]
Surveillance for waterborne-disease outbreaks--United States, 1999-2000.

MMWR Surveill Summ. 2002-11-22

[8]
One Health concept for strengthening public health surveillance and response through Field Epidemiology and Laboratory Training in Ghana.

Pan Afr Med J. 2011

[9]
Web-based network analysis and visualization using CellMaps.

Bioinformatics. 2016-10-1

[10]
CoV-Seq, a New Tool for SARS-CoV-2 Genome Analysis and Visualization: Development and Usability Study.

J Med Internet Res. 2020-10-2

引用本文的文献

[1]
A graph homomorphism approach for unraveling histories of metastatic cancers and viral outbreaks under evolutionary constraints.

Nat Commun. 2025-8-28

[2]
The Molecular Epidemiology of HIV-1 in Russia, 1987-2023: Subtypes, Transmission Networks and Phylogenetic Story.

Pathogens. 2025-7-26

[3]
Using Pandemic-Era Longitudinal Surveillance Data to Improve Investigations of Carbapenem-Resistant Clusters.

Public Health Rep. 2025-8-11

[4]
Phylodynamics analysis of HIV epidemic history in Belarus in 1987-2022.

Front Epidemiol. 2025-7-21

[5]
Clade II Mpox Infections Among Cruise Ship Passengers and Crew Members - United States, 2024.

MMWR Morb Mortal Wkly Rep. 2025-6-19

[6]
High prevalence of simian foamy virus infection of South American Indians.

PLoS Pathog. 2025-6-9

[7]
Strategies and Opportunities to Improve Community Health through Advanced Molecular Detection and Genomic Surveillance of Infectious Diseases.

Emerg Infect Dis. 2025-5

[8]
Looking back into the Hepatitis C Virus epidemic dynamics from Unnao, India through phylogenetic approach.

PLoS One. 2025-1-16

[9]
Dimensionality reduction distills complex evolutionary relationships in seasonal influenza and SARS-CoV-2.

Virus Evol. 2024-11-14

[10]
Phylogenetic-informed graph deep learning to classify dynamic transmission clusters in infectious disease epidemics.

Bioinform Adv. 2024-11-7

本文引用的文献

[1]
Participation in Fraternity and Sorority Activities and the Spread of COVID-19 Among Residential University Communities - Arkansas, August 21-September 5, 2020.

MMWR Morb Mortal Wkly Rep. 2021-1-8

[2]
Multidisciplinary Community-Based Investigation of a COVID-19 Outbreak Among Marshallese and Hispanic/Latino Communities - Benton and Washington Counties, Arkansas, March-June 2020.

MMWR Morb Mortal Wkly Rep. 2020-12-4

[3]
Transmission Dynamics of COVID-19 Outbreaks Associated with Child Care Facilities - Salt Lake City, Utah, April-July 2020.

MMWR Morb Mortal Wkly Rep. 2020-9-18

[4]
Phylogenetic and Demographic Characterization of Directed HIV-1 Transmission Using Deep Sequences from High-Risk and General Population Cohorts/Groups in Uganda.

Viruses. 2020-3-18

[5]
Phylodynamic Analysis Complements Partner Services by Identifying Acute and Unreported HIV Transmission.

Viruses. 2020-1-27

[6]
Phylogenomic analysis of Neisseria gonorrhoeae transmission to assess sexual mixing and HIV transmission risk in England: a cross-sectional, observational, whole-genome sequencing study.

Lancet Infect Dis. 2020-1-21

[7]
Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain.

PLoS Pathog. 2019-10-31

[8]
Notes from the Field: HIV Diagnoses Among Persons Who Inject Drugs - Northeastern Massachusetts, 2015-2018.

MMWR Morb Mortal Wkly Rep. 2019-3-15

[9]
Nextstrain: real-time tracking of pathogen evolution.

Bioinformatics. 2018-12-1

[10]
HIV-TRACE (TRAnsmission Cluster Engine): a Tool for Large Scale Molecular Epidemiology of HIV-1 and Other Rapidly Evolving Pathogens.

Mol Biol Evol. 2018-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索