Löffler Katharina, Scherr Tim, Mikut Ralf
Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
PLoS One. 2021 Sep 7;16(9):e0249257. doi: 10.1371/journal.pone.0249257. eCollection 2021.
Automatic cell segmentation and tracking enables to gain quantitative insights into the processes driving cell migration. To investigate new data with minimal manual effort, cell tracking algorithms should be easy to apply and reduce manual curation time by providing automatic correction of segmentation errors. Current cell tracking algorithms, however, are either easy to apply to new data sets but lack automatic segmentation error correction, or have a vast set of parameters that needs either manual tuning or annotated data for parameter tuning. In this work, we propose a tracking algorithm with only few manually tunable parameters and automatic segmentation error correction. Moreover, no training data is needed. We compare the performance of our approach to three well-performing tracking algorithms from the Cell Tracking Challenge on data sets with simulated, degraded segmentation-including false negatives, over- and under-segmentation errors. Our tracking algorithm can correct false negatives, over- and under-segmentation errors as well as a mixture of the aforementioned segmentation errors. On data sets with under-segmentation errors or a mixture of segmentation errors our approach performs best. Moreover, without requiring additional manual tuning, our approach ranks several times in the top 3 on the 6th edition of the Cell Tracking Challenge.
自动细胞分割与跟踪有助于深入了解驱动细胞迁移的过程,从而获得定量的见解。为了以最少的人工工作量研究新数据,细胞跟踪算法应易于应用,并通过自动校正分割错误来减少人工处理时间。然而,当前的细胞跟踪算法要么易于应用于新数据集,但缺乏自动分割错误校正功能;要么有大量参数,需要人工调整或使用带注释的数据进行参数调整。在这项工作中,我们提出了一种跟踪算法,该算法只有很少的人工可调参数,并具有自动分割错误校正功能。此外,无需训练数据。我们将我们的方法与细胞跟踪挑战赛中三种性能良好的跟踪算法在包含模拟的、退化的分割(包括假阴性、过度分割和欠分割错误)的数据集上的性能进行了比较。我们的跟踪算法可以校正假阴性、过度分割和欠分割错误以及上述分割错误的混合情况。在存在欠分割错误或分割错误混合的数据集上,我们的方法表现最佳。此外,在无需额外人工调整的情况下,我们的方法在细胞跟踪挑战赛第6版中多次位列前三。