IEEE Trans Med Imaging. 2014 Apr;33(4):849-60. doi: 10.1109/TMI.2013.2296937.
One distinguishing property of life is its temporal dynamics, and it is hence only natural that time lapse experiments play a crucial role in modern biomedical research areas such as signaling pathways, drug discovery or developmental biology. Such experiments yield a very large number of images that encode complex cellular activities, and reliable automated cell tracking emerges naturally as a prerequisite for further quantitative analysis. However, many existing cell tracking methods are restricted to using only a small number of features to allow for manual tweaking. In this paper, we propose a novel cell tracking approach that embraces a powerful machine learning technique to optimize the tracking parameters based on user annotated tracks. Our approach replaces the tedious parameter tuning with parameter learning and allows for the use of a much richer set of complex tracking features, which in turn affords superior prediction accuracy. Furthermore, we developed an active learning approach for efficient training data retrieval, which reduces the annotation effort to only 17%. In practical terms, our approach allows life science researchers to inject their expertise in a more intuitive and direct manner. This process is further facilitated by using a glyph visualization technique for ground truth annotation and validation. Evaluation and comparison on several publicly available benchmark sequences show significant performance improvement over recently reported approaches. Code and software tools are provided to the public.
生命的一个显著特征是其时间动态性,因此在信号通路、药物发现或发育生物学等现代生物医学研究领域中,时间推移实验发挥着至关重要的作用。此类实验产生了大量编码复杂细胞活动的图像,而可靠的自动细胞跟踪自然成为进一步进行定量分析的前提条件。然而,许多现有的细胞跟踪方法仅限于使用少量特征来进行手动调整。在本文中,我们提出了一种新颖的细胞跟踪方法,它采用了强大的机器学习技术,根据用户标注的轨迹来优化跟踪参数。我们的方法用参数学习代替了繁琐的参数调整,并允许使用更丰富的复杂跟踪特征集,从而提供更准确的预测精度。此外,我们还开发了一种主动学习方法,用于高效地检索训练数据,将注释工作量减少到 17%。实际上,我们的方法允许生命科学研究人员以更直观和直接的方式注入他们的专业知识。通过使用字形可视化技术进行地面实况标注和验证,进一步简化了此过程。在几个公开可用的基准序列上的评估和比较表明,与最近报道的方法相比,我们的方法显著提高了性能。我们向公众提供了代码和软件工具。