Suppr超能文献

玻碳微电极上的石墨烯在神经生理记录和刺激中表现出长期的结构和功能稳定性。

Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation.

作者信息

Nimbalkar Surabhi, Samejima Soshi, Dang Viet, Hunt Trevor, Nunez Omar, Moritz Chet, Kassegne Sam

机构信息

NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, College of Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States of America.

NSF-ERC Center for Neurotechnology (CNT), Seattle, WA 98195, United States of America.

出版信息

J Neural Eng. 2021 Sep 22;18(5). doi: 10.1088/1741-2552/ac245a.

Abstract

There is a growing interest in the use of carbon and its allotropes for microelectrodes in neural probes because of their inertness, long-term electrical and electrochemical stability, and versatility. Building on this interest, we introduce a new electrode material system consisting of an ultra-thin monoatomic layer of graphene (Gr) mechanically supported by a relatively thicker layer of glassy carbon (GC).Due to its high electrical conductivity and high double-layer capacitance, Gr has impressive electrical and electrochemical properties, two key properties that are useful for neural recording and stimulation applications. However, because of its two-dimensional nature, Gr exhibits a lack of stiffness in the transverse direction and hence almost non-existent flexural and out-of-plane rigidity that will severely limit its wider use. On the other hand, GC is one of carbon's important allotropes and consists of three-dimensional microstructures of Gr fragments with a natural molecular similarity to Gr. Further, GC has exceptional chemical inertness, good electrical properties, high electrochemical stability, purely capacitive charge injection, and fast surface electrokinetics coupled with lithography patternability. This makes GC an ideal candidate for addressing Gr's lack of out-of-plane rigidity through providing a matching sturdier and robust mechanical backing. Combining the strengths of these two allotropes of carbon, we introduce a new neural probe that consists of ∼1 nm thick layer of patterned Gr microelectrodes supported by another layer of 3-5m thick patterned GC.. We present the fabrication technology for the new(graphene on glassy carbon) microelectrodes and the accompanying pattern transfer technology on flexible substrate and report on the bond between these two allotropes of carbon through FTIR, surface morphology through SEM, topography through atomic force microscopy, and microstructure imaging through scanning transmission electron microscopy. A long-term (18 weeks)study of the use of thesemicroelectrodes assessed the quality of the electrocorticography-based neural signal recording and stimulation through electrophysiological measurements. The probes were demonstrated to be functionally and structurally stable over the 18 week period with minimal glial response-the longest reported so far for Gr-based microelectrodes.Themicroelectrodes presented here offers a compelling case for expanding the potentials of Gr-based technology in the broad areas of neural probes.

摘要

由于碳及其同素异形体具有惰性、长期的电学和电化学稳定性以及多功能性,它们在神经探针中的微电极应用越来越受到关注。基于这种兴趣,我们引入了一种新的电极材料系统,该系统由一层超薄的单原子层石墨烯(Gr)组成,由一层相对较厚的玻璃碳(GC)机械支撑。由于其高电导率和高双层电容,Gr具有令人印象深刻的电学和电化学性质,这是神经记录和刺激应用中有用的两个关键性质。然而,由于其二维性质,Gr在横向方向上缺乏刚度,因此几乎不存在弯曲和平面外刚度,这将严重限制其更广泛的应用。另一方面,GC是碳的重要同素异形体之一,由与Gr具有天然分子相似性的Gr片段的三维微观结构组成。此外,GC具有出色的化学惰性、良好的电学性质、高电化学稳定性、纯电容性电荷注入以及与光刻图案化相结合的快速表面动电现象。这使得GC成为通过提供匹配的更坚固耐用的机械支撑来解决Gr平面外刚度不足的理想候选材料。结合这两种碳同素异形体的优势,我们引入了一种新的神经探针,它由约1nm厚的图案化Gr微电极层组成,由另一层3 - 5μm厚的图案化GC支撑。我们展示了新型(玻璃碳上的石墨烯)微电极的制造技术以及在柔性基板上的伴随图案转移技术,并通过傅里叶变换红外光谱(FTIR)报告了这两种碳同素异形体之间的键合,通过扫描电子显微镜(SEM)报告了表面形态,通过原子力显微镜报告了形貌,通过扫描透射电子显微镜报告了微观结构成像。对这些微电极使用情况的长期(18周)研究通过电生理测量评估了基于皮层脑电图的神经信号记录和刺激的质量。这些探针在18周期间被证明在功能和结构上是稳定的,神经胶质反应最小——这是迄今为止基于Gr的微电极报道的最长时间。这里介绍的微电极有力地证明了在神经探针的广泛领域中扩展基于Gr技术潜力的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验