Leloire Maëva, Dhainaut Jérémy, Devaux Philippe, Leroy Olivia, Desjonqueres Hortense, Poirier Stéphane, Nerisson Philippe, Cantrel Laurent, Royer Sébastien, Loiseau Thierry, Volkringer Christophe
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX, Saint-Paul Lez Durance 13115, France.
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
J Hazard Mater. 2021 Aug 15;416:125890. doi: 10.1016/j.jhazmat.2021.125890. Epub 2021 Apr 15.
In the present work, we aim to investigate the ability of the zirconium-based MOF-type compound UiO-66-NH, to immobilize molecular gaseous iodine under conditions analogous to those encountered in an operating Filtered Containment Venting System (FCVS) line. Typically, the UiO-66-NH particles were exposed to I (beta and gamma emitters) and submitted to air/steam at 120 °C, under gamma irradiation (1.9 kGy h). In parallel to this experiment under simulated accidental conditions, the stability of the binderless UiO-66-NH granules under steam and gamma irradiation was investigated. In order to fit with the specifications required by typical venting systems, and to compare the efficiency of the selected MOF to porous materials commonly used by the industry, scale-up syntheses and UiO-66-NH millimetric-size shaping were realized. For this task, we developed an original binderless method, in order to analyze solely the efficiency of the UiO-66-NH material. The shaped MOF particles were then submitted separately to gamma irradiation, steam and temperature, for confirming their viability in a venting process. Their structural, textural and mechanical behaviors were characterized by the means several techniques including gas sorption, powder X-ray diffraction, infrared spectroscopy and crushing tests. Promising results were obtained to trap gaseous molecular iodine in severe accidental conditions.
在本工作中,我们旨在研究锆基金属有机框架(MOF)型化合物UiO-66-NH₂在类似于运行中的过滤安全壳通风系统(FCVS)管道所遇到的条件下固定分子态气态碘的能力。通常,将UiO-66-NH₂颗粒暴露于碘(β和γ发射体)中,并在120℃、γ辐照(1.9 kGy/h)下置于空气/蒸汽中。在模拟事故条件下进行该实验的同时,研究了无粘结剂UiO-66-NH₂颗粒在蒸汽和γ辐照下的稳定性。为了符合典型通风系统的要求,并比较所选MOF与工业上常用的多孔材料的效率,实现了放大合成和UiO-66-NH₂毫米级成型。为此任务,我们开发了一种原始的无粘结剂方法,以便仅分析UiO-66-NH₂材料的效率。然后将成型的MOF颗粒分别进行γ辐照、蒸汽和温度处理,以确认它们在通风过程中的可行性。通过气体吸附、粉末X射线衍射、红外光谱和抗压试验等多种技术手段对其结构、织构和力学行为进行了表征。在严重事故条件下捕获气态分子碘方面获得了有前景的结果。