Suppr超能文献

新冠疫情期间,艾哈迈达巴德印度外海的抗药性。

Antidrug resistance in the Indian ambient waters of Ahmedabad during the COVID-19 pandemic.

机构信息

Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.

Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.

出版信息

J Hazard Mater. 2021 Aug 15;416:126125. doi: 10.1016/j.jhazmat.2021.126125. Epub 2021 May 24.

Abstract

The ongoing COVID-19 pandemic increases the consumption of antimicrobial substances (ABS) due to the unavailability of approved vaccine(s). To assess the effect of imprudent consumption of ABS during the COVID-19 pandemic, we compare the 2020 prevalence of antidrug resistance (ADR) of Escherichia coli (E. coli) with a similar survey carried out in 2018 in Ahmedabad, India using SARS-CoV-2 gene detection as a marker of ABS usage. We found a significant ADR increase in 2020 compared to 2018 in ambient water bodies, harbouring a higher incidence of ADR E.coli towards non-fluoroquinolone drugs. Effective SARS-CoV-2 genome copies were found to be associated with the ADR prevalence. The prevalence of ADR depends on the efficiency of WWTPs (Wastewater Treatment Plants) and the catchment area in its vicinity. In the year 2018 study, prevalence of ADR was discretely distributed, and the maximum ADR prevalence recorded was ~60%; against the current homogenous ADR increase, and up to 85% of maximum ADR among the incubated E.coli isolated from the river (Sabarmati) and lake (Chandola and Kankaria) samples. Furthermore, wastewater treatment plants showed less increase in comparison to the ambient waters, which eventually imply that although SARS-CoV-2 genes and faecal pollution may be diluted in the ambient waters, as indicated by low C-value and E.coli count, the danger of related aftermath like ADR increase cannot be nullified. Also, Non-fluoroquinolone drugs exhibited overall more resistance than quinolone drugs. Overall, this is probably the first-ever study that traces the COVID-19 pandemic imprints on the prevalence of antidrug resistance (ADR) through wastewater surveillance and hints at monitoring escalation of other environmental health parameters. This study will make the public and policyholders concerned about the optimum use of antibiotics during any kind of treatment.

摘要

由于无法获得批准的疫苗,持续的 COVID-19 大流行增加了对抗微生物物质 (ABS) 的消耗。为了评估在 COVID-19 大流行期间不谨慎使用 ABS 的影响,我们将 2020 年大肠杆菌 (E. coli) 的抗药性 (ADR) 流行率与 2018 年在印度艾哈迈达巴德进行的类似调查进行了比较,该调查使用 SARS-CoV-2 基因检测作为 ABS 使用的标志物。我们发现,与 2018 年相比,2020 年在环境水体中,非氟喹诺酮类药物的 E. coli 抗药性发生率更高,ADR 显著增加。发现有效 SARS-CoV-2 基因组拷贝与 ADR 流行率相关。ADR 的流行率取决于污水处理厂 (Wastewater Treatment Plants) 的效率及其附近的集水区。在 2018 年的研究中,ADR 的流行率呈离散分布,记录到的最大 ADR 流行率约为 60%;而当前的 ADR 则呈均匀增加趋势,从从河流(萨巴尔马蒂河)和湖泊(钱德拉湖和坎卡里亚湖)样本中分离出来的孵育大肠杆菌中,最大 ADR 达到 85%。此外,与环境水相比,污水处理厂的增长幅度较小,这最终意味着,尽管 SARS-CoV-2 基因和粪便污染可能在环境水中被稀释,如低 C 值和大肠杆菌计数所表明的那样,但不能消除与相关后果(如 ADR 增加)相关的危险。此外,非氟喹诺酮类药物总体上比喹诺酮类药物表现出更高的耐药性。总体而言,这可能是首次通过废水监测追踪 COVID-19 大流行对抗药性(ADR)流行率的影响的研究,并暗示需要监测其他环境卫生参数的升级。这项研究将使公众和政策制定者关注在任何治疗中抗生素的最佳使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e58/8142275/be34c1c32a90/ga1_lrg.jpg

相似文献

1
Antidrug resistance in the Indian ambient waters of Ahmedabad during the COVID-19 pandemic.
J Hazard Mater. 2021 Aug 15;416:126125. doi: 10.1016/j.jhazmat.2021.126125. Epub 2021 May 24.
2
Spectre of SARS-CoV-2 RNA in the ambient urban waters of Ahmedabad and Guwahati: A tale of two Indian cities.
Environ Res. 2022 Mar;204(Pt B):112067. doi: 10.1016/j.envres.2021.112067. Epub 2021 Sep 17.
3
First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2.
Sci Total Environ. 2020 Dec 1;746:141326. doi: 10.1016/j.scitotenv.2020.141326. Epub 2020 Jul 28.
7
Response of wastewater-based epidemiology predictor for the second wave of COVID-19 in Ahmedabad, India: A long-term data Perspective.
Environ Pollut. 2023 Nov 15;337:122471. doi: 10.1016/j.envpol.2023.122471. Epub 2023 Aug 29.
9
Detection and quantification of SARS-CoV-2 RNA in wastewater influent in relation to reported COVID-19 incidence in Finland.
Water Res. 2022 May 15;215:118220. doi: 10.1016/j.watres.2022.118220. Epub 2022 Feb 23.

引用本文的文献

1
Reflections of COVID-19 cases in the wastewater loading of SARS-CoV-2 RNA: A case of three major cities of Gujarat, India.
Case Stud Chem Environ Eng. 2021 Dec;4:100115. doi: 10.1016/j.cscee.2021.100115. Epub 2021 Jul 8.
2
Genomic investigation unveils high-risk ESBL producing within a rural environmental water body.
Curr Res Microb Sci. 2023 Dec 23;6:100216. doi: 10.1016/j.crmicr.2023.100216. eCollection 2024.
3
Implications of COVID-19 pandemic on environmental compartments: Is plastic pollution a major issue?
J Hazard Mater Adv. 2022 Feb;5:100041. doi: 10.1016/j.hazadv.2021.100041. Epub 2021 Dec 23.
4
Ventilation reconstruction in bathrooms for restraining hazardous plume: Mitigate COVID-19 and beyond.
J Hazard Mater. 2022 Oct 5;439:129697. doi: 10.1016/j.jhazmat.2022.129697. Epub 2022 Jul 29.
5
Genetic sequencing detected the SARS-CoV-2 delta variant in wastewater a month prior to the first COVID-19 case in Ahmedabad (India).
Environ Pollut. 2022 Oct 1;310:119757. doi: 10.1016/j.envpol.2022.119757. Epub 2022 Jul 16.
6
Phage therapy in the Covid-19 era: Advantages over antibiotics.
Curr Res Microb Sci. 2022;3:100115. doi: 10.1016/j.crmicr.2022.100115. Epub 2022 Feb 16.
8
Delineating the impact of COVID-19 on antimicrobial resistance: An Indian perspective.
Sci Total Environ. 2022 Apr 20;818:151702. doi: 10.1016/j.scitotenv.2021.151702. Epub 2021 Nov 16.
10
COVID-19 lockdown shows how much natural mountain regions are affected by heavy tourism.
Sci Total Environ. 2022 Feb 1;806(Pt 3):151355. doi: 10.1016/j.scitotenv.2021.151355. Epub 2021 Nov 2.

本文引用的文献

1
Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands.
Environ Sci Technol Lett. 2020 May 20;7(7):511-516. doi: 10.1021/acs.estlett.0c00357. eCollection 2020 Jul 14.
3
Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings.
Int J Infect Dis. 2021 Mar;104:250-254. doi: 10.1016/j.ijid.2020.12.087. Epub 2021 Jan 9.
4
A chronicle of SARS-CoV-2: Seasonality, environmental fate, transport, inactivation, and antiviral drug resistance.
J Hazard Mater. 2021 Mar 5;405:124043. doi: 10.1016/j.jhazmat.2020.124043. Epub 2020 Oct 6.
6
Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater.
Cell Rep Med. 2020 Sep 22;1(6):100098. doi: 10.1016/j.xcrm.2020.100098. Epub 2020 Aug 31.
7
Implications of antibiotics use during the COVID-19 pandemic: present and future.
J Antimicrob Chemother. 2020 Dec 1;75(12):3413-3416. doi: 10.1093/jac/dkaa350.
8
Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review.
Sci Total Environ. 2020 Oct 10;738:140320. doi: 10.1016/j.scitotenv.2020.140320. Epub 2020 Jun 18.
9
First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan.
Sci Total Environ. 2020 Oct 1;737:140405. doi: 10.1016/j.scitotenv.2020.140405. Epub 2020 Jun 20.
10
First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2.
Sci Total Environ. 2020 Dec 1;746:141326. doi: 10.1016/j.scitotenv.2020.141326. Epub 2020 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验