Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland.
Water Res. 2022 May 15;215:118220. doi: 10.1016/j.watres.2022.118220. Epub 2022 Feb 23.
Wastewater-based surveillance is a cost-effective concept for monitoring COVID-19 pandemics at a population level. Here, SARS-CoV-2 RNA was monitored from a total of 693 wastewater (WW) influent samples from 28 wastewater treatment plants (WWTP, N = 21-42 samples per WWTP) in Finland from August 2020 to May 2021, covering WW of ca. 3.3 million inhabitants (∼ 60% of the Finnish population). Quantity of SARS-CoV-2 RNA fragments in 24 h-composite samples was determined by using the ultrafiltration method followed by nucleic acid extraction and CDC N2 RT-qPCR assay. SARS-CoV-2 RNA signals at each WWTP were compared over time to the numbers of confirmed COVID-19 cases (14-day case incidence rate) in the sewer network area. Over the 10-month surveillance period with an extensive total number of samples, the detection rate of SARS-CoV-2 RNA in WW was 79% (including 6% uncertain results, i.e., amplified only in one out of four, two original and two ten-fold diluted replicates), while only 24% of all samples exhibited gene copy numbers above the quantification limit. The range of the SARS-CoV-2 detection rate in WW varied from 33% (including 10% uncertain results) in Pietarsaari to 100% in Espoo. Only six out of 693 WW samples were positive with SARS-COV-2 RNA when the reported COVID-19 case number from the preceding 14 days was zero. Overall, the 14-day COVID-19 incidence was 7.0, 18, and 36 cases per 100 000 persons within the sewer network area when the probability to detect SARS-CoV-2 RNA in wastewater samples was 50%, 75% and 95%, respectively. The quantification of SARS-CoV-2 RNA required significantly more COVID-19 cases: the quantification rate was 50%, 75%, and 95% when the 14-day incidence was 110, 152, and 223 COVID-19 cases, respectively, per 100 000 persons. Multiple linear regression confirmed the relationship between the COVID-19 incidence and the SARS-CoV-2 RNA quantified in WW at 15 out of 28 WWTPs (overall R = 0.36, p < 0.001). At four of the 13 WWTPs where a significant relationship was not found, the SARS-CoV-2 RNA remained below the quantification limit during the whole study period. In the five other WWTPs, the sewer coverage was less than 80% of the total population in the area and thus the COVID-19 cases may have been inhabitants from the areas not covered. Based on the results obtained, WW-based surveillance of SARS-CoV-2 could be used as an indicator for local and national COVID-19 incidence trends. Importantly, the determination of SARS-CoV-2 RNA fragments from WW is a powerful and non-invasive public health surveillance measure, independent of possible changes in the clinical testing strategies or in the willingness of individuals to be tested for COVID-19.
基于污水的监测是一种在人群水平上监测 COVID-19 大流行的具有成本效益的概念。在这里,我们从芬兰 28 个污水处理厂(每个污水处理厂有 21-42 个样本,N=693 个污水(WW)进水样本)的总共 693 个污水(WW)进水样本中监测了 SARS-CoV-2 RNA,覆盖了约 330 万居民(约占芬兰人口的 60%)的 WW。使用超滤法,通过核酸提取和 CDC N2 RT-qPCR 检测,确定 24 小时复合样本中 SARS-CoV-2 RNA 片段的数量。在整个 10 个月的监测期间,每个污水处理厂的 SARS-CoV-2 RNA 信号与下水道网络区域中确认的 COVID-19 病例数(14 天病例发病率)进行了比较。在有大量样本的 10 个月监测期间,在 WW 中检测到 SARS-CoV-2 RNA 的检出率为 79%(包括 6%的不确定结果,即仅在四个、两个原始和两个十倍稀释的复制品中的一个中扩增),而只有 24%的所有样本的基因拷贝数高于定量限。在 WW 中 SARS-CoV-2 检出率的范围从皮萨廖(Pietarsaari)的 33%(包括 10%的不确定结果)到埃斯波(Espoo)的 100%不等。当报告的 14 天 COVID-19 病例数为零时,在 693 个 WW 样本中只有 6 个样本对 SARS-COV-2 RNA 呈阳性。总体而言,当污水样本中检测到 SARS-CoV-2 RNA 的概率分别为 50%、75%和 95%时,下水道网络区域内每 100 000 人中 COVID-19 的 14 天发病率分别为 7.0、18 和 36 例。SARS-CoV-2 RNA 的定量需要显著更多的 COVID-19 病例:当 14 天发病率分别为每 100 000 人 110、152 和 223 例 COVID-19 时,定量率分别为 50%、75%和 95%。多元线性回归证实了在 28 个污水处理厂中的 15 个污水处理厂(总体 R=0.36,p<0.001)中 COVID-19 发病率与 WW 中定量的 SARS-CoV-2 RNA 之间的关系。在没有发现显著关系的 13 个污水处理厂中的 4 个中,SARS-CoV-2 RNA 在整个研究期间仍低于定量限。在另外五个污水处理厂中,下水道覆盖面积不到该地区总人口的 80%,因此 COVID-19 病例可能是未覆盖地区的居民。基于所获得的结果,基于污水的 SARS-CoV-2 监测可用作当地和国家 COVID-19 发病率趋势的指标。重要的是,从 WW 中确定 SARS-CoV-2 RNA 片段是一种强大且非侵入性的公共卫生监测措施,独立于临床检测策略的可能变化或个人接受 COVID-19 检测的意愿。