Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
School of Applied Science, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
Sci Rep. 2021 Sep 7;11(1):17799. doi: 10.1038/s41598-021-97410-4.
Observational studies suggest relationships between obesity, urate, and gout but are possibly confounded. We assessed whether genetically determined obesity, higher urate (and related traits), and gout were causal using multiple Mendelian randomization (MR) approaches and linkage disequilibrium score regression for genetic correlations (r). For data, we used genome-wide association study summary statistics available through MR-Base. We observed that obesity increased urate (beta = 0.127; 95% CI = 0.098, 0.157; P-value = 1.2E-17; r = 0.25 [P-value = 0.001]) and triglycerides (beta = 0.082; 95% CI = 0.065, 0.099; P-value = 1.2E-21; r = 0.23 [P-value = 8.8E-12]) and decreased high-density lipoprotein cholesterol (HDL) (beta = - 0.083; 95% CI = - 0.101, - 0.065; P-value = 2.5E-19; r = - 0.28; [P-value = 5.2E-24]). Higher triglycerides increased urate (beta = 0.198; 95% CI = 0.146, 0.251; P-value = 8.9E-14; r = 0.29 [P-value = 0.001]) and higher HDL decreased urate (beta = - 0.109; 95% CI = - 0.148, - 0.071; P-value = 2.7E- 08; r = - 0.21 [P-value = 9.8E-05]). Higher urate (OR = 1.030; 95% CI = 1.028, 1.032; P-value = 1.1E-130; r = 0.89 [P-value = 1.7E-55]) and obesity caused gout (OR = 1.003; 95% CI = 1.001, 1.004; P-value = 1.3E-04; r = 0.23 [P-value = 2.7E-05]). Obesity on gout with urate as a mediator revealed all the effect of obesity on gout occurred through urate. Obesity on low-density lipoprotein cholesterol (LDL) was null (beta = -0.011; 95% CI = -0.030, 0.008; P-value = 2.6E-01; r = 0.03 [P-value = 0.369]). A multivariable MR of obesity, HDL, and triglycerides on urate showed obesity influenced urate when accounting for HDL and triglycerides. Obesity's impact on urate was exacerbated by it decreasing HDL.
观察性研究表明肥胖、尿酸和痛风之间存在关系,但可能存在混杂因素。我们评估了肥胖是否与尿酸(和相关特征)以及痛风具有因果关系,为此我们使用了多种孟德尔随机化(MR)方法和基于连锁不平衡评分回归的遗传相关性(r)分析。对于数据,我们使用了通过 MR-Base 提供的全基因组关联研究汇总统计信息。我们发现肥胖会增加尿酸(beta = 0.127;95%CI = 0.098,0.157;P 值 = 1.2E-17;r = 0.25 [P 值 = 0.001])和甘油三酯(beta = 0.082;95%CI = 0.065,0.099;P 值 = 1.2E-21;r = 0.23 [P 值 = 8.8E-12]),同时降低高密度脂蛋白胆固醇(HDL)(beta = -0.083;95%CI = -0.101,-0.065;P 值 = 2.5E-19;r = -0.28 [P 值 = 5.2E-24])。较高的甘油三酯会增加尿酸(beta = 0.198;95%CI = 0.146,0.251;P 值 = 8.9E-14;r = 0.29 [P 值 = 0.001]),而较高的 HDL 会降低尿酸(beta = -0.109;95%CI = -0.148,-0.071;P 值 = 2.7E-08;r = -0.21 [P 值 = 9.8E-05])。较高的尿酸(OR = 1.030;95%CI = 1.028,1.032;P 值 = 1.1E-130;r = 0.89 [P 值 = 1.7E-55])和肥胖(OR = 1.003;95%CI = 1.001,1.004;P 值 = 1.3E-04;r = 0.23 [P 值 = 2.7E-05])会导致痛风。当尿酸作为中介物时,肥胖对痛风的影响表明,肥胖对痛风的所有影响都是通过尿酸产生的。肥胖对低密度脂蛋白胆固醇(LDL)的影响是中性的(beta = -0.011;95%CI = -0.030,0.008;P 值 = 2.6E-01;r = 0.03 [P 值 = 0.369])。对肥胖、HDL 和甘油三酯对尿酸的多变量 MR 分析表明,当考虑到 HDL 和甘油三酯时,肥胖会影响尿酸。肥胖对尿酸的影响因降低 HDL 而加剧。