Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P.R. China.
Adv Sci (Weinh). 2021 Nov;8(21):e2102777. doi: 10.1002/advs.202102777. Epub 2021 Sep 8.
There is no doubt that hydrogen energy can play significant role in promoting the development and progress of modern society. The utilization of hydrogen energy has developed rapidly, but it is far from the requirement of human. Therefore, it is very urgent to develop methodologies and technologies for efficient hydrogen production, especially high activity and durable electrocatalysts. Here a bimetallic oxide cluster on heterostructure of vanadium ruthenium oxides/graphdiyne (VRuO /GDY) is reported. The unique acetylene-rich structure of graphdiyne achieves outstanding characteristics of electrocatalyst: i) controlled preparation of catalysts for achieving multiple-metal clusters; ii) regulation of catalyst composition and morphology for synthesizing high-performance catalysts; iii) highly active and durable hydrogen evolution reaction (HER) properties. The optimal porous electrocatalyst (VRu O /GDY) can deliver 10 mA cm at low overpotentials of 13 and 12 mV together with robust long-term stability in alkaline and neutral media, respectively, which are much smaller than Pt/C. The results reveal that the synergism of different components can efficiently facilitate the electron/mass transport properties, reduce the energy barrier, and increase the active site number for high catalytic performances.
毫无疑问,氢能在推动现代社会的发展和进步方面可以发挥重要作用。氢能的利用发展迅速,但远不能满足人类的需求。因此,开发高效制氢的方法和技术非常紧迫,特别是高活性和耐用的电催化剂。在这里,我们报道了一种在钒钌氧化物/石墨炔(VRuO / GDY)异质结构上的双金属氧化物团簇。石墨炔独特的富乙炔结构实现了电催化剂的突出特性:i)控制催化剂的制备以实现多金属团簇;ii)调节催化剂组成和形态以合成高性能催化剂;iii)具有高活性和耐用的析氢反应(HER)性能。优化后的多孔电催化剂(VRuO / GDY)在碱性和中性介质中,过电位分别为 13 mV 和 12 mV 时,可提供 10 mA cm 的电流密度,且具有稳健的长期稳定性,远优于 Pt/C。结果表明,不同组分的协同作用可以有效地促进电子/质量传输特性,降低能垒,增加活性位点数量,从而提高催化性能。