Suppr超能文献

以生物质废料为原料简便合成微孔碳用于甲酸脱氢的高性能载体

Facile Synthesis of Microporous Carbons from Biomass Waste as High Performance Supports for Dehydrogenation of Formic Acid.

作者信息

Cao Tingting, Cheng Jinke, Ma Jun, Yang Chunliang, Yao Mengqin, Liu Fei, Deng Min, Wang Xiaodan, Ren Yuan

机构信息

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.

Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China.

出版信息

Nanomaterials (Basel). 2021 Nov 11;11(11):3028. doi: 10.3390/nano11113028.

Abstract

Formic acid (FA) is found to be a potential candidate for the storage of hydrogen. For dehydrogenation of FA, the supports of our catalysts were acquired by conducting ZnCl treatment and carbonation for biomass waste. The texture and surface properties significantly affected the size and dispersion of Pd and its interaction with the support so as to cause the superior catalytic performance of catalysts. Microporous carbon obtained by carbonization of ZnCl activated peanut shells (C-ZnCl) possessing surface areas of 629 m·g and a micropore rate of 73.5%. For ZnCl activated melon seed (C-ZnCl), the surface area and micropore rate increased to 1081 m·g and 80.0%, respectively. In addition, the introduction of ZnCl also caused the increase in surface O content and reduced the acidity of the catalyst. The results represented that C-ZnCl with uniform honeycomb morphology displayed the best properties, and the as-prepared Pd/C-ZnCl catalyst afforded 100% hydrogen selectivity as well as excellent catalytic activity with an initial high turnover number (TON) value of 28.3 at 30 °C and 100.1 at 60 °C.

摘要

已发现甲酸(FA)是一种潜在的氢储存候选物。对于FA的脱氢反应,我们通过对生物质废料进行ZnCl处理和碳化来获得催化剂的载体。织构和表面性质显著影响了Pd的尺寸和分散度及其与载体的相互作用,从而导致催化剂具有优异的催化性能。通过对ZnCl活化的花生壳进行碳化得到的微孔碳(C-ZnCl),其表面积为629 m²·g,微孔率为73.5%。对于ZnCl活化的瓜子(C-ZnCl),表面积和微孔率分别增加到1081 m²·g和80.0%。此外,ZnCl的引入还导致表面O含量增加,并降低了催化剂的酸度。结果表明,具有均匀蜂窝状形态的C-ZnCl表现出最佳性能,所制备的Pd/C-ZnCl催化剂具有100%的氢选择性以及优异的催化活性,在30℃时初始高周转数(TON)值为28.3,在60℃时为100.1。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验