Pelevkin Alexey V, Loukhovitski Boris I, Sharipov Alexander S
Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia.
Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow 125412, Russia.
J Phys Chem A. 2021 Sep 23;125(37):8294-8312. doi: 10.1021/acs.jpca.1c05733. Epub 2021 Sep 8.
The kinetics of the reaction of N with electronically excited O (singlet aΔ and bΣ states), potentially relevant for NO formation in nonthermal air plasma, is theoretically studied using the multireference second-order perturbation theory. The corresponding thermodynamically and kinetically favored reaction pathways together with possible intersystem crossings are identified. It has been revealed that the energy barrier for the N + O(aΔ) → NO + O reaction is approximately twice the barrier height for the counterpart process with O(Σ). The molecular oxygen in the bΣ state, in turn, proved to be even less reactive to atomic nitrogen than O(aΔ). Appropriate thermal rate constants for specified reaction channels are calculated by the variational transition-state theory incorporating corrections for the tunneling effect, nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. The corresponding three-parameter Arrhenius expressions for the broad temperature range ( = 300-4000 K) are reported. At last, post-transition-state molecular dynamics simulations indicate that the N + O(aΔ) reaction produces vibrationally much colder NO molecules than the N + O(Σ) process.
采用多参考二阶微扰理论对N与电子激发态O(单重态aΔ和bΣ态)反应的动力学进行了理论研究,该反应可能与非热空气等离子体中NO的形成有关。确定了相应的热力学和动力学有利反应途径以及可能的系间窜越。研究发现,N + O(aΔ) → NO + O反应的能垒约为N + O(Σ)对应反应能垒高度的两倍。结果表明,bΣ态的分子氧对原子氮的反应活性甚至比O(aΔ)更低。通过变分过渡态理论计算了特定反应通道的适当热速率常数,并对过渡态和反应物的隧穿效应、非绝热跃迁及振动非谐性进行了校正。报告了在较宽温度范围(300 - 4000 K)下相应的三参数阿伦尼乌斯表达式。最后,过渡态后分子动力学模拟表明,N + O(aΔ)反应产生的NO分子振动温度比N + O(Σ)反应产生的NO分子低得多。