Molecular Design Sciences, Sanofi R&D, 94403 Vitry-sur-Seine, France.
Molecular Design Sciences, Sanofi R&D, 91 385 Chilly-Mazarin, France.
J Chem Theory Comput. 2021 Oct 12;17(10):6522-6535. doi: 10.1021/acs.jctc.1c00453. Epub 2021 Sep 8.
The binding kinetic properties of potential drugs may significantly influence their subsequent clinical efficacy. Predictions of these properties based on computer simulations provide a useful alternative to their expensive and time-consuming experimental counterparts, even at an early drug discovery stage. Herein, we perform scaled molecular dynamics (ScaledMD) simulations on a set of 27 ligands of HSP90 belonging to more than seven chemical series to estimate their relative residence times. We introduce two new techniques for the analysis and the classification of the simulated unbinding trajectories. The first technique, which helps in estimating the limits of the free energy well around the bound state, and the second one, based on a new contact map fingerprint, allow the description and the comparison of the paths that lead to unbinding. Using these analyses, we find that ScaledMD's relative residence time generally enables the identification of the slowest unbinders. We propose an explanation for the underestimation of the residence times of a subset of compounds, and we investigate how the biasing in ScaledMD can affect the mechanistic insights that can be gained from the simulations.
潜在药物的结合动力学性质可能会显著影响其后续的临床疗效。基于计算机模拟对这些性质的预测提供了一种有用的替代方法,可替代昂贵且耗时的实验方法,即使在药物发现的早期阶段也是如此。在此,我们对 HSP90 的 27 个配体进行了扩展分子动力学(ScaledMD)模拟,这些配体属于七个以上的化学系列,以估计它们的相对停留时间。我们引入了两种新的技术来分析和分类模拟的非结合轨迹。第一种技术有助于估计结合状态周围自由能阱的极限,而第二种技术则基于新的接触图指纹,允许描述和比较导致非结合的路径。通过这些分析,我们发现 ScaledMD 的相对停留时间通常可以识别出最慢的非结合物。我们提出了一种解释,说明为什么一部分化合物的停留时间会被低估,并研究了 ScaledMD 中的偏差如何影响可以从模拟中获得的机械洞察力。