Mollica Luca, Theret Isabelle, Antoine Mathias, Perron-Sierra Françoise, Charton Yves, Fourquez Jean-Marie, Wierzbicki Michel, Boutin Jean A, Ferry Gilles, Decherchi Sergio, Bottegoni Giovanni, Ducrot Pierre, Cavalli Andrea
CompuNet, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy.
Institut de Recherches Servier , 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
J Med Chem. 2016 Aug 11;59(15):7167-76. doi: 10.1021/acs.jmedchem.6b00632. Epub 2016 Jul 22.
Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times.
配体-靶点驻留时间正逐渐成为药物发现的关键参数,因为它能够可靠地预测体内药物疗效。目前已有研究结合和解离动力学的实验方法,但我们仍然缺乏可靠的计算工具来预测动力学和驻留时间。大多数尝试都是基于强力分子动力学(MD)模拟,这种方法对CPU要求很高且准确性欠佳。我们最近报道了一种基于标度MD的新方法,该方法在药物发现中显示出预测驻留时间的潜力。在此,我们通过将该方法应用于一系列可能对治疗2型糖尿病有用的葡萄糖激酶激活剂,进一步检验了我们方法的预测能力。我们将标度MD与实验动力学测量和X射线晶体学相结合,通过直接比较计算预测和实验测量结果,迅速检验了该方法的可靠性。良好的一致性突出了我们基于标度MD的方法作为一种计算估计和预测药物驻留时间的创新方法的潜力。