Suppr超能文献

基于逆合成预训练分子表示和分子动力学模拟的PLS模型揭示的药物设计的结构-动力学关系

Structure-Kinetic Relationship for Drug Design Revealed by a PLS Model with Retrosynthesis-Based Pre-Trained Molecular Representation and Molecular Dynamics Simulation.

作者信息

Zhou Feng, Yin Shiqiu, Xiao Yi, Lin Zaiyun, Fu Weiqiang, Zhang Yingsheng J

机构信息

Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.

出版信息

ACS Omega. 2023 May 12;8(20):18312-18322. doi: 10.1021/acsomega.3c02294. eCollection 2023 May 23.

Abstract

Drug design based on kinetic properties is growing in application. Here, we applied retrosynthesis-based pre-trained molecular representation (RPM) in machine learning (ML) to train 501 inhibitors of 55 proteins and successfully predicted the dissociation rate constant () values of 38 inhibitors from an independent dataset for the N-terminal domain of heat shock protein 90α (N-HSP90). Our RPM molecular representation outperforms other pre-trained molecular representations such as GEM, MPG, and general molecular descriptors from RDKit. Furthermore, we optimized the accelerated molecular dynamics to calculate the relative retention time (RT) for the 128 inhibitors of N-HSP90 and obtained the protein-ligand interaction fingerprints (IFPs) on their dissociation pathways and their influencing weights on the value. We observed a high correlation among the simulated, predicted, and experimental -log() values. Combining ML, molecular dynamics (MD) simulation, and IFPs derived from accelerated MD helps design a drug for specific kinetic properties and selectivity profiles to the target of interest. To further validate our predictive ML model, we tested our model on two new N-HSP90 inhibitors, which have experimental values and are not in our ML training dataset. The predicted values are consistent with experimental data, and the mechanism of their kinetic properties can be explained by IFPs, which shed light on the nature of their selectivity against N-HSP90 protein. We believe that the ML model described here is transferable to predict of other proteins and will enhance the kinetics-based drug design endeavor.

摘要

基于动力学性质的药物设计应用正在不断增加。在此,我们将基于逆合成的预训练分子表示(RPM)应用于机器学习(ML)中,以训练55种蛋白质的501种抑制剂,并成功预测了来自热休克蛋白90α N端结构域(N-HSP90)独立数据集的38种抑制剂的解离速率常数()值。我们的RPM分子表示优于其他预训练分子表示,如GEM、MPG以及来自RDKit的一般分子描述符。此外,我们优化了加速分子动力学,以计算N-HSP90的128种抑制剂的相对保留时间(RT),并在其解离途径上获得了蛋白质-配体相互作用指纹(IFP)及其对值的影响权重。我们观察到模拟、预测和实验-log()值之间具有高度相关性。结合ML、分子动力学(MD)模拟以及从加速MD得出的IFP,有助于设计针对特定动力学性质和对目标感兴趣的选择性概况的药物。为了进一步验证我们的预测ML模型,我们在两种新的N-HSP90抑制剂上测试了我们的模型,这两种抑制剂具有实验值且不在我们的ML训练数据集中。预测值与实验数据一致,并且它们动力学性质的机制可以通过IFP来解释,这揭示了它们对N-HSP90蛋白选择性的本质。我们相信这里描述的ML模型可转移用于预测其他蛋白质的,并且将加强基于动力学的药物设计工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7740/10210189/7644ef86b613/ao3c02294_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验