Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore, 117585, Singapore.
Adv Sci (Weinh). 2021 Nov;8(21):e2102519. doi: 10.1002/advs.202102519. Epub 2021 Sep 8.
Nanomaterial-induced endothelial leakiness (NanoEL) is an interfacial phenomenon denoting the paracellular transport of nanoparticles that is pertinent to nanotoxicology, nanomedicine and biomedical engineering. While the NanoEL phenomenon is complementary to the enhanced permeability and retention effect in terms of their common applicability to delineating the permeability and behavior of nanoparticles in tumoral environments, these two effects significantly differ in scope, origin, and manifestation. In the current study, the descriptors are fully examined of the NanoEL phenomenon elicited by generic citrate-coated gold nanoparticles (AuNPs) of changing size and concentration, from microscopic gap formation and actin reorganization down to molecular signaling pathways and nanoscale interactions of AuNPs with VE-cadherin and its intra/extracellular cofactors. Employing synergistic in silico methodologies, for the first time the molecular and statistical mechanics of cadherin pair disruption, especially in response to AuNPs of the smallest size and highest concentration are revealed. This study marks a major advancement toward establishing a comprehensive NanoEL framework for complementing the understanding of the transcytotic pathway and for guiding the design and application of future nanomedicines harnessing the myriad functions of the mammalian vasculature.
纳米材料诱导的血管内皮通透性增加(NanoEL)是一种界面现象,指的是纳米颗粒的细胞旁转运,与纳米毒理学、纳米医学和生物医学工程有关。虽然 NanoEL 现象与增强的渗透性和保留效应在其共同适用于描绘肿瘤环境中纳米颗粒的渗透性和行为方面是互补的,但这两种效应在范围、起源和表现上有很大的不同。在本研究中,全面研究了由不同大小和浓度的通用柠檬酸涂层金纳米颗粒(AuNPs)引发的 NanoEL 现象,从微观间隙形成和肌动蛋白重组到分子信号通路以及 AuNPs 与 VE-钙黏蛋白及其细胞内/细胞外辅助因子的纳米级相互作用。本研究采用协同的计算方法,首次揭示了钙黏蛋白对的分子和统计力学破坏,特别是对最小尺寸和最高浓度的 AuNPs 的响应。这项研究标志着朝着建立一个全面的 NanoEL 框架迈出了重要一步,该框架可补充对转胞吞途径的理解,并为利用哺乳动物血管的多种功能指导未来纳米药物的设计和应用提供指导。
Adv Sci (Weinh). 2021-11
Nanoscale. 2024-5-16
Nat Commun. 2023-7-17
ACS Appl Mater Interfaces. 2021-12-8
J Nanobiotechnology. 2025-5-30
J Nanobiotechnology. 2024-11-15
Int J Nanomedicine. 2024
Nanoscale. 2024-5-16
Nat Commun. 2024-1-19
Nat Commun. 2023-7-17
Acta Pharm Sin B. 2023-6
Adv Healthc Mater. 2020-1
Chem Soc Rev. 2019-10-28
Nat Nanotechnol. 2019-7-1