Suppr超能文献

通过机器学习进行流感病毒基因型到表型的预测:系统评价。

Influenza virus genotype to phenotype predictions through machine learning: a systematic review.

机构信息

Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.

Department of Computer Science, School of Engineering, Tufts University, Medford, MA, USA.

出版信息

Emerg Microbes Infect. 2021 Dec;10(1):1896-1907. doi: 10.1080/22221751.2021.1978824.

Abstract

BACKGROUND

There is great interest in understanding the viral genomic predictors of phenotypic traits that allow influenza A viruses to adapt to or become more virulent in different hosts. Machine learning techniques have demonstrated promise in addressing this critical need for other pathogens because the underlying algorithms are especially well equipped to uncover complex patterns in large datasets and produce generalizable predictions for new data. As the body of research where these techniques are applied for influenza A virus phenotype prediction continues to grow, it is useful to consider the strengths and weaknesses of these approaches to understand what has prevented these models from seeing widespread use by surveillance laboratories and to identify gaps that are underexplored with this technology.

METHODS AND RESULTS

We present a systematic review of English literature published through 15 April 2021 of studies employing machine learning methods to generate predictions of influenza A virus phenotypes from genomic or proteomic input. Forty-nine studies were included in this review, spanning the topics of host discrimination, human adaptability, subtype and clade assignment, pandemic lineage assignment, characteristics of infection, and antiviral drug resistance.

CONCLUSIONS

Our findings suggest that biases in model design and a dearth of wet laboratory follow-up may explain why these models often go underused. We, therefore, offer guidance to overcome these limitations, aid in improving predictive models of previously studied influenza A virus phenotypes, and extend those models to unexplored phenotypes in the ultimate pursuit of tools to enable the characterization of virus isolates across surveillance laboratories.

摘要

背景

人们对理解流感 A 病毒基因组预测因子的兴趣浓厚,这些预测因子使流感 A 病毒能够适应或在不同宿主中变得更具毒性。机器学习技术在满足其他病原体的这一关键需求方面表现出了巨大的潜力,因为这些底层算法特别擅长在大型数据集挖掘复杂模式,并对新数据进行可推广的预测。随着这些技术在流感 A 病毒表型预测方面的研究不断增加,考虑这些方法的优缺点有助于理解是什么阻止了这些模型在监测实验室中得到广泛应用,并确定该技术中研究不足的领域。

方法和结果

我们对截至 2021 年 4 月 15 日发表的英文文献进行了系统综述,这些文献采用机器学习方法从基因组或蛋白质组学输入中生成流感 A 病毒表型预测。本综述共纳入了 49 项研究,涵盖了宿主鉴别、人类适应性、亚型和分支分配、大流行谱系分配、感染特征和抗病毒药物耐药性等主题。

结论

我们的研究结果表明,模型设计中的偏见和缺乏湿实验室的后续研究可能解释了为什么这些模型经常未被充分利用。因此,我们提供了克服这些局限性的指导,以改进对以前研究过的流感 A 病毒表型的预测模型,并将这些模型扩展到未探索的表型,最终旨在开发工具,以实现对监测实验室中病毒分离物的特征描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbfb/8462836/152a43e1300e/TEMI_A_1978824_F0001_OC.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验