Suppr超能文献

针对流感、呼吸道合胞病毒、艾滋病毒和新型冠状病毒2的人工智能方法:重点综述

AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review.

作者信息

Livieratos Achilleas, Kagadis George C, Gogos Charalambos, Akinosoglou Karolina

机构信息

Independent Researcher, 15238 Athens, Greece.

Department of Medicine, University of Patras, 26504 Rio, Greece.

出版信息

Pathogens. 2025 Jul 30;14(8):748. doi: 10.3390/pathogens14080748.

Abstract

Artificial intelligence (AI) techniques-ranging from hybrid mechanistic-machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks-are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain-data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses.

摘要

人工智能(AI)技术——从混合机械学习与机器学习(ML)集成到梯度提升决策树、支持向量机和深度神经网络——正在改变季节性流感、呼吸道合胞病毒(RSV)、人类免疫缺陷病毒(HIV)和严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的管理方式。使用极端梯度提升(XGBoost)和随机森林的基于症状的分诊模型,以及基于卷积神经网络(CNN)构建的成像分类器,提高了对各种呼吸道感染的诊断准确性。基于Transformer的架构和社交媒体监测管道实现了对COVID-19的实时监测。在HIV研究中,支持向量机(SVM)、逻辑回归和深度神经网络(DNN)框架推动了病毒蛋白分类和耐药性图谱绘制,加速了抗病毒药物和疫苗的发现。尽管取得了这些成功,但仍然存在持续的挑战——数据异质性、模型可解释性有限、大语言模型(LLM)中的幻觉以及低资源环境中的基础设施差距。我们建议采用标准化的开放获取数据管道,并整合可解释人工智能方法,以确保在未来的病毒爆发应对中安全、公平地部署由人工智能驱动的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa0/12389194/c7e394221477/pathogens-14-00748-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验