Suppr超能文献

土壤杆菌属表达非磷酸化途径用于 D-木糖的分解代谢。

Herbaspirillum seropedicae expresses non-phosphorylative pathways for D-xylose catabolism.

机构信息

Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.

Department of Biochemistry and Molecular Biology, Universidade Federal Do Paraná, Curitiba, PR, Brazil.

出版信息

Appl Microbiol Biotechnol. 2021 Oct;105(19):7339-7352. doi: 10.1007/s00253-021-11507-4. Epub 2021 Sep 9.

Abstract

Herbaspirillum seropedicae is a β-proteobacterium that establishes as an endophyte in various plants. These bacteria can consume diverse carbon sources, including hexoses and pentoses like D-xylose. D-xylose catabolic pathways have been described in some microorganisms, but databases of genes involved in these routes are limited. This is of special interest in biotechnology, considering that D-xylose is the second most abundant sugar in nature and some microorganisms, including H. seropedicae, are able to accumulate poly-3-hydroxybutyrate when consuming this pentose as a carbon source. In this work, we present a study of D-xylose catabolic pathways in H. seropedicae strain Z69 using RNA-seq analysis and subsequent analysis of phenotypes determined in targeted mutants in corresponding identified genes. G5B88_22805 gene, designated xylB, encodes a NAD-dependent D-xylose dehydrogenase. Mutant Z69∆xylB was still able to grow on D-xylose, although at a reduced rate. This appears to be due to the expression of an L-arabinose dehydrogenase, encoded by the araB gene (G5B88_05250), that can use D-xylose as a substrate. According to our results, H. seropedicae Z69 uses non-phosphorylative pathways to catabolize D-xylose. The lower portion of metabolism involves co-expression of two routes: the Weimberg pathway that produces α-ketoglutarate and a novel pathway recently described that synthesizes pyruvate and glycolate. This novel pathway appears to contribute to D-xylose metabolism, since a mutant in the last step, Z69∆mhpD, was able to grow on this pentose only after an extended lag phase (40-50 h). KEY POINTS: • xylB gene (G5B88_22805) encodes a NAD-dependent D-xylose dehydrogenase. • araB gene (G5B88_05250) encodes a L-arabinose dehydrogenase able to recognize D-xylose. • A novel route involving mhpD gene is preferred for D-xylose catabolism.

摘要

土壤杆菌属是一种β-变形菌,能作为内生菌定殖在各种植物中。这些细菌可以消耗多种碳源,包括己糖和戊糖如 D-木糖。一些微生物中已经描述了 D-木糖的分解代谢途径,但涉及这些途径的基因数据库是有限的。考虑到 D-木糖是自然界中第二丰富的糖,而包括 H. seropedicae 在内的一些微生物在消耗这种戊糖作为碳源时能够积累聚-3-羟基丁酸,这在生物技术方面具有特殊意义。在这项工作中,我们使用 RNA-seq 分析和随后对相应鉴定基因的靶向突变体表型的分析,研究了 H. seropedicae 菌株 Z69 中的 D-木糖分解代谢途径。G5B88_22805 基因,命名为 xylB,编码 NAD 依赖性 D-木糖脱氢酶。突变体 Z69∆xylB 仍然能够在 D-木糖上生长,尽管生长速度较慢。这似乎是由于 L-阿拉伯糖脱氢酶的表达,该酶由 araB 基因(G5B88_05250)编码,可将 D-木糖作为底物。根据我们的结果,H. seropedicae Z69 使用非磷酸化途径来分解 D-木糖。代谢的较低部分涉及两种途径的共表达:Weimberg 途径产生α-酮戊二酸和最近描述的一种新途径,该途径合成丙酮酸和乙醇酸。这种新途径似乎有助于 D-木糖代谢,因为最后一步突变体 Z69∆mhpD 在延长的迟滞期(40-50 h)后仅能在这种戊糖上生长。关键点:• xylB 基因(G5B88_22805)编码 NAD 依赖性 D-木糖脱氢酶。• araB 基因(G5B88_05250)编码能够识别 D-木糖的 L-阿拉伯糖脱氢酶。• 涉及 mhpD 基因的新途径更有利于 D-木糖的分解代谢。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验