Suppr超能文献

人人都爱弱者:重组微生物中木糖氧化途径的代谢工程。

Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms.

机构信息

Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea.

Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea.

出版信息

Appl Microbiol Biotechnol. 2018 Sep;102(18):7703-7716. doi: 10.1007/s00253-018-9186-z. Epub 2018 Jul 12.

Abstract

The D-xylose oxidative pathway (XOP) has recently been employed in several recombinant microorganisms for growth or for the production of several valuable compounds. The XOP is initiated by D-xylose oxidation to D-xylonolactone, which is then hydrolyzed into D-xylonic acid. D-Xylonic acid is then dehydrated to form 2-keto-3-deoxy-D-xylonic acid, which may be further dehydrated then oxidized into α-ketoglutarate or undergo aldol cleavage to form pyruvate and glycolaldehyde. This review introduces a brief discussion about XOP and its discovery in bacteria and archaea, such as Caulobacter crescentus and Haloferax volcanii. Furthermore, the current advances in the metabolic engineering of recombinant strains employing the XOP are discussed. This includes utilization of XOP for the production of diols, triols, and short-chain organic acids in Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum. Improving the D-xylose uptake, growth yields, and product titer through several metabolic engineering techniques bring some of these recombinant strains close to industrial viability. However, more developments are still needed to optimize the XOP pathway in the host strains, particularly in the minimization of by-product formation.

摘要

D-木糖氧化途径(XOP)最近已被应用于几种重组微生物中,用于生长或生产几种有价值的化合物。XOP 由 D-木糖氧化启动,生成 D-木酮糖内酯,然后水解为 D-木酮酸。D-木酮酸然后脱水形成 2-酮-3-脱氧-D-木酮酸,它可能进一步脱水然后氧化成α-酮戊二酸,或经历醛醇裂解形成丙酮酸和甘油醛。本文简要介绍了 XOP 及其在细菌和古菌中的发现,如新月柄杆菌和沃氏嗜盐菌。此外,还讨论了利用 XOP 在重组菌株中进行代谢工程的最新进展。这包括利用 XOP 在大肠杆菌、酿酒酵母和谷氨酸棒杆菌中生产二醇、三醇和短链有机酸。通过几种代谢工程技术提高 D-木糖的摄取、生长产量和产物滴度,使这些重组菌株中的一些接近工业可行性。然而,仍需要进一步的发展来优化宿主菌株中的 XOP 途径,特别是在减少副产物形成方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验