Ren Xing-Yuan, Han Rong-Sheng, Chen Liang
Mathematics and Physics Department, North China Electric Power University, Beijing, 102206, People's Republic of China.
J Phys Condens Matter. 2021 Sep 27;33(49). doi: 10.1088/1361-648X/ac2533.
Using numerical renormalization group calculation, we construct a dataset with 100 K samples, and train six different neural networks for the prediction of spectral functions from density of states (DOS) of the host material. We find that a combination of gated recurrent unit (GRU) network and bidirectional GRU (BiGRU) performances the best among all the six neural networks. The mean absolute error of the GRU + BiGRU network can reach 0.052 and 0.043 when this network is evaluated on the original dataset and two other independent datasets. The average time of spectral function predictions from machine learning is on the scale of 10-10that of traditional impurity solvers for Anderson impurity model. This investigation pave the way for the application of recurrent neural network and convolutional neural network in the prediction of spectral functions from DOSs in machine learning solvers of magnetic impurity problems.
使用数值重整化群计算,我们构建了一个包含10万个样本的数据集,并训练了六个不同的神经网络,用于根据主体材料的态密度(DOS)预测光谱函数。我们发现,门控循环单元(GRU)网络和双向GRU(BiGRU)的组合在所有六个神经网络中表现最佳。当在原始数据集和其他两个独立数据集上对GRU + BiGRU网络进行评估时,该网络的平均绝对误差可分别达到0.052和0.043。机器学习预测光谱函数的平均时间尺度为传统安德森杂质模型杂质求解器的10^-10 。本研究为循环神经网络和卷积神经网络在磁性杂质问题机器学习求解器中根据DOS预测光谱函数的应用铺平了道路。