Liang Rong, Chang Xintan, Jia Pengtao, Xu Chengyixiong
Department of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054 China.
Department of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
ACS Omega. 2020 Oct 30;5(44):28579-28586. doi: 10.1021/acsomega.0c03417. eCollection 2020 Nov 10.
To improve the utilization of mine gas concentration monitoring data with deep learning theory, we propose a gas concentration forecasting model with a bidirectional gated recurrent unit neural network (Adamax-BiGRU) using an adaptive moment estimation maximum (Adamax) optimization algorithm. First, we apply the Laida criterion and Lagrange interpolation to preprocess the gas concentration monitoring data. Then, the MSE is used as the loss function to determine the parameters of the hidden layer, hidden nodes, and iterations of the BiGRU model. Finally, the Adamax algorithm is used to optimize the BiGRU model to forecast the gas concentration. The experimental results show that compared with the recurrent neural network, LSTM, and gated recurrent unit (GRU) models, the error of the BiGRU model on the test set is reduced by 25.58, 12.53, and 3.01%, respectively. Compared with other optimization algorithms, the Adamax optimization algorithm achieved the best forecasting results. Thus, Adamax-BiGRU is an effective method to predict gas concentration values and has a good application value.
为了利用深度学习理论提高矿井瓦斯浓度监测数据的利用率,我们提出了一种使用自适应矩估计最大值(Adamax)优化算法的双向门控循环单元神经网络(Adamax-BiGRU)瓦斯浓度预测模型。首先,我们应用莱达准则和拉格朗日插值对瓦斯浓度监测数据进行预处理。然后,使用均方误差(MSE)作为损失函数来确定BiGRU模型的隐藏层参数、隐藏节点和迭代次数。最后,使用Adamax算法对BiGRU模型进行优化以预测瓦斯浓度。实验结果表明,与递归神经网络、长短期记忆网络(LSTM)和门控循环单元(GRU)模型相比,BiGRU模型在测试集上的误差分别降低了25.58%、12.53%和3.01%。与其他优化算法相比,Adamax优化算法取得了最佳的预测结果。因此,Adamax-BiGRU是预测瓦斯浓度值的有效方法,具有良好的应用价值。