Suppr超能文献

多发性逃避同行评审:以 COVID-19 研究为例。

Multiplicity Eludes Peer Review: The Case of COVID-19 Research.

机构信息

Department of Geography, University of Málaga, 29010 Málaga, Spain.

Institute of Natural Resources and Agrobiology of Seville (IRNAS), Spanish National Research Council (CSIC), 41012 Seville, Spain.

出版信息

Int J Environ Res Public Health. 2021 Sep 3;18(17):9304. doi: 10.3390/ijerph18179304.

Abstract

Multiplicity arises when data analysis involves multiple simultaneous inferences, increasing the chance of spurious findings. It is a widespread problem frequently ignored by researchers. In this paper, we perform an exploratory analysis of the Web of Science database for COVID-19 observational studies. We examined 100 top-cited COVID-19 peer-reviewed articles based on -values, including up to 7100 simultaneous tests, with 50% including >34 tests, and 20% > 100 tests. We found that the larger the number of tests performed, the larger the number of significant results (r = 0.87, < 10). The number of -values in the abstracts was not related to the number of -values in the papers. However, the highly significant results ( < 0.001) in the abstracts were strongly correlated (r = 0.61, < 10) with the number of < 0.001 significances in the papers. Furthermore, the abstracts included a higher proportion of significant results (0.91 vs. 0.50), and 80% reported only significant results. Only one reviewed paper addressed multiplicity-induced type I error inflation, pointing to potentially spurious results bypassing the peer-review process. We conclude the need to pay special attention to the increased chance of false discoveries in observational studies, including non-replicated striking discoveries with a potentially large social impact. We propose some easy-to-implement measures to assess and limit the effects of multiplicity.

摘要

当数据分析涉及多个同时进行的推断时,就会出现多重性,从而增加了虚假发现的可能性。这是一个普遍存在的问题,经常被研究人员忽视。在本文中,我们对 COVID-19 观察性研究的 Web of Science 数据库进行了探索性分析。我们根据 P 值检查了 100 篇最受引用的 COVID-19 同行评议文章,其中包括多达 7100 次同时测试,50%的文章包含>34 次测试,20%的文章包含>100 次测试。我们发现,进行的测试数量越多,显著结果的数量就越大(r = 0.87,<10)。摘要中的 P 值数量与论文中的 P 值数量无关。然而,摘要中高度显著的结果(<0.001)与论文中<0.001 显著性的数量呈强烈相关性(r = 0.61,<10)。此外,摘要中包含更多的显著结果(0.91 比 0.50),并且 80%的报告仅包含显著结果。只有一篇经过审查的论文涉及多重性引起的 I 型错误膨胀,这表明可能存在绕过同行评审过程的虚假结果。我们得出结论,需要特别注意观察性研究中错误发现的可能性增加,包括具有潜在大社会影响的未经复制的显著发现。我们提出了一些易于实施的措施来评估和限制多重性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a099/8430657/346b72d52d47/ijerph-18-09304-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验