Suppr超能文献

一种应用于四足机器人稳定步态生成的需要学习的算法。

A Needs Learning Algorithm Applied to Stable Gait Generation of Quadruped Robot.

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650221, China.

出版信息

Sensors (Basel). 2022 Sep 26;22(19):7302. doi: 10.3390/s22197302.

Abstract

Based on Maslow's hierarchy of needs theory, we have proposed a novel machine learning algorithm that combines factors of the environment and its own needs to make decisions for different states of an agent. This means it can be applied to the gait generation of a quadruped robot, which needs to make demand decisions. To evaluate the design, we created an experimental task in order to compare the needs learning algorithm with a reinforcement learning algorithm, which was also derived from psychological motivation theory. It was found that the needs learning algorithm outperformed the reinforcement learning in tasks that involved making decisions between different levels of needs. Finally, we applied the needs learning algorithm to the problem of stable gait generation of quadruped robot, and it had achieved good results in simulation and real robot.

摘要

基于马斯洛的需求层次理论,我们提出了一种新的机器学习算法,该算法结合了环境因素及其自身需求,以便为主体的不同状态做出决策。这意味着它可以应用于需要做出需求决策的四足机器人的步态生成。为了评估设计,我们创建了一个实验任务,以便将需求学习算法与也源自心理动机理论的强化学习算法进行比较。结果发现,在需要在不同层次的需求之间做出决策的任务中,需求学习算法优于强化学习算法。最后,我们将需求学习算法应用于四足机器人稳定步态生成的问题中,在模拟和真实机器人中都取得了良好的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80eb/9570960/056b4ab17207/sensors-22-07302-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验