Chen Si, Lastra Ruben Omar, Paunesku Tatjana, Antipova Olga, Li Luxi, Deng Junjing, Luo Yanqi, Wanzer Michael Beau, Popovic Jelena, Li Ya, Glasco Alexander D, Jacobsen Chris, Vogt Stefan, Woloschak Gayle E
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Cancers (Basel). 2021 Sep 6;13(17):4497. doi: 10.3390/cancers13174497.
Research in cancer nanotechnology is entering its third decade, and the need to study interactions between nanomaterials and cells remains urgent. Heterogeneity of nanoparticle uptake by different cells and subcellular compartments represent the greatest obstacles to a full understanding of the entire spectrum of nanomaterials' effects. In this work, we used flow cytometry to evaluate changes in cell cycle associated with non-targeted nanocomposite uptake by individual cells and cell populations. Analogous single cell and cell population changes in nanocomposite uptake were explored by X-ray fluorescence microscopy (XFM). Very few nanoparticles are visible by optical imaging without labeling, but labeling increases nanoparticle complexity and the risk of modified cellular uptake. XFM can be used to evaluate heterogeneity of nanocomposite uptake by directly imaging the metal atoms present in the metal-oxide nanocomposites under investigation. While XFM mapping has been performed iteratively in 2D with the same sample at different resolutions, this study is the first example of serial tomographic imaging at two different resolutions. A cluster of cells exposed to non-targeted nanocomposites was imaged with a micron-sized beam in 3D. Next, the sample was sectioned for immunohistochemistry as well as a high resolution "zoomed in" X-ray fluorescence (XRF) tomography with 80 nm beam spot size. Multiscale XRF tomography will revolutionize our ability to explore cell-to-cell differences in nanomaterial uptake.
癌症纳米技术的研究已进入第三个十年,研究纳米材料与细胞之间相互作用的需求仍然迫切。不同细胞和亚细胞区室对纳米颗粒摄取的异质性是全面了解纳米材料效应全貌的最大障碍。在这项工作中,我们使用流式细胞术评估与单个细胞和细胞群体对非靶向纳米复合材料摄取相关的细胞周期变化。通过X射线荧光显微镜(XFM)探索了纳米复合材料摄取中类似的单细胞和细胞群体变化。在没有标记的情况下,通过光学成像几乎看不到纳米颗粒,但标记会增加纳米颗粒的复杂性以及改变细胞摄取的风险。XFM可用于通过直接对所研究的金属氧化物纳米复合材料中存在的金属原子进行成像来评估纳米复合材料摄取的异质性。虽然已经在二维中以不同分辨率对同一样品进行了迭代XFM映射,但本研究是在两种不同分辨率下进行连续断层成像的首个实例。用微米级光束对暴露于非靶向纳米复合材料的一群细胞进行三维成像。接下来,对样品进行切片以进行免疫组织化学以及使用80纳米束斑尺寸的高分辨率“放大”X射线荧光(XRF)断层扫描。多尺度XRF断层扫描将彻底改变我们探索细胞间纳米材料摄取差异的能力。