X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Metallomics. 2022 Sep 1;14(9). doi: 10.1093/mtomcs/mfac025.
Scanning X-ray fluorescence (XRF) tomography provides powerful characterization capabilities in evaluating elemental distribution and differentiating their inter- and intra-cellular interactions in a three-dimensional (3D) space. Scanning XRF tomography encounters practical challenges from the sample itself, where the range of rotation angles is limited by geometric constraints, involving sample substrates or nearby features either blocking or converging into the field of view. This study aims to develop a reliable and efficient workflow that can (1) expand the experimental window for nanoscale tomographic analysis of local areas of interest within a laterally extended specimen, and (2) bridge 3D analysis at micrometer and nanoscales on the same specimen. We demonstrate the workflow using a specimen of HeLa cells exposed to iron oxide core and titanium dioxide shell (Fe3O4/TiO2) nanocomposites. The workflow utilizes iterative and multiscale XRF data collection with intermediate sample processing by focused ion beam (FIB) sample preparation between measurements at different length scales. Initial assessment combined with precise sample manipulation via FIB allows direct removal of sample regions that are obstacles to both incident X-ray beam and outgoing XRF signals, which considerably improves the subsequent nanoscale tomography analysis. This multiscale analysis workflow has advanced bio-nanotechnology studies by providing deep insights into the interaction between nanocomposites and single cells at a subcellular level as well as statistical assessments from measuring a population of cells.
扫描 X 射线荧光(XRF)层析成像在评估元素分布和区分其在三维(3D)空间中的细胞内和细胞间相互作用方面提供了强大的表征能力。扫描 XRF 层析成像在遇到来自样品本身的实际挑战时,旋转角度的范围受到几何约束的限制,涉及样品基底或附近的特征,这些特征要么阻挡要么汇聚到视场中。本研究旨在开发一种可靠且高效的工作流程,该流程可以:(1)扩展横向扩展样品中局部感兴趣区域的纳米级层析分析的实验窗口;(2)在同一样品上弥合微米和纳米尺度的 3D 分析。我们使用暴露于氧化铁核和二氧化钛壳(Fe3O4/TiO2)纳米复合材料的 HeLa 细胞样品演示了该工作流程。该工作流程利用迭代和多尺度 XRF 数据采集,并在不同长度尺度的测量之间通过聚焦离子束(FIB)样品制备进行中间样品处理。初始评估结合通过 FIB 进行的精确样品操作,允许直接去除对入射 X 射线束和出射 XRF 信号都构成障碍的样品区域,这极大地改善了随后的纳米级层析分析。这种多尺度分析工作流程通过在亚细胞水平上深入了解纳米复合材料与单细胞之间的相互作用以及从测量细胞群体中获得的统计评估,推进了生物纳米技术研究。