Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
Neuroscience. 2022 May 1;489:111-142. doi: 10.1016/j.neuroscience.2021.08.035. Epub 2021 Sep 8.
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
神经元和神经胶质细胞都具有表达丰富离子通道、转运体和受体的细胞膜。离子在神经元和神经胶质细胞膜上的持续流动导致电压波动,可以从细胞外基质中记录下来。该电压信号的高频分量包含有关尖峰活动的信息,反映了记录位置周围神经元的输出。该信号的低频分量,称为局部场电位 (LFP),传统上被认为提供了关于影响各种神经元大树突的突触输入的信息。在这篇综述中,我们讨论了最近的计算和实验研究,这些研究指出了几种活跃的树突机制的关键作用,这些机制可以影响 LFPs 的产生及其与位置相关的谱时动力学,跨越不同的脑区。我们强烈强调需要考虑几个快速和慢速的树突事件以及相关的主动机制——包括它们表达谱的梯度、神经元和神经胶质细胞之间的细胞内和细胞间时空相互作用、跨尺度的异质性和简并性、神经调制影响以及活动依赖性可塑性——以深入了解健康和疾病状态下不同行为状态下 LFP 的起源。我们提供了一些简单但重要的指南,介绍如何考虑这些树突机制来对 LFPs 进行建模,并详细介绍了在研究 LFPs 时如何考虑神经元和突触的各种异质性和电生理特性的方法。