Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA; Canon Stroke and Vascular Research Center, Buffalo, New York, USA.
Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA; Canon Stroke and Vascular Research Center, Buffalo, New York, USA.
World Neurosurg. 2021 Nov;155:e748-e760. doi: 10.1016/j.wneu.2021.08.136. Epub 2021 Sep 16.
Collateral circulation is associated with improved functional outcome in patients with large vessel occlusion acute ischemic stroke (AIS) who undergo reperfusion therapy. Assessment of collateral flow can be time consuming, subjective, and difficult because of complex neurovasculature. This study assessed the ability of multiple artificial intelligence algorithms in determining collateral flow of patients with AIS.
Two hundred patients with AIS between March 2019 and January 2020 were included in this retrospective study. Peak arterial computed tomography perfusion volumes were used to assess collateral scores. Neural networks were developed for dichotomized (≥50% or <50%) and multiclass (0% filling, 0%-50% filling, 50%-100% filling, or 100% filling) collateral scoring. Maximum intensity projections from axial and anteroposterior (AP) views were synthesized for each bone subtracted three-dimensional volume and used as network inputs separately and together, along with three-dimensional data. Training:testing:validation splits of 60:30:10 and 20 iterations of Monte Carlo cross-validation were used. Network performance was assessed using 95% confidence intervals of accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).
The axial and AP input combination provided the most accurate results for dichotomized classification: accuracy, 0.85 ± 0.01; sensitivity, 0.88 ± 0.02; specificity, 0.82 ± 0.03; PPV, 0.86 ± 0.02; and NPV, 0.83 ± 0.03. Similarly, the axial and AP input combination provided the best results for multiclass classification: accuracy, 0.80 ± 0.01; sensitivity, 0.64 ± 0.01; specificity, 0.85 ± 0.01; PPV, 0.65 ± 0.02; and NPV, 0.85 ± 0.01.
This study reports one of the first artificial intelligence-based algorithms capable of accurately and efficiently assessing collateral flow of patients with AIS. This automated method for determining collateral filling could streamline clinical workflow, reduce bias, and aid in clinical decision making for determining reperfusion-eligible patients.
在接受再灌注治疗的大血管闭塞性急性缺血性卒中(AIS)患者中,侧支循环与功能结局改善相关。侧支血流的评估可能既耗时又主观,并且由于复杂的神经血管结构而难以进行。本研究评估了多种人工智能算法在确定 AIS 患者侧支血流方面的能力。
本回顾性研究纳入了 2019 年 3 月至 2020 年 1 月期间的 200 名 AIS 患者。使用峰值动脉计算机断层灌注体积评估侧支评分。为二分法(≥50%或<50%)和多分类(0%充盈、0%-50%充盈、50%-100%充盈或 100%充盈)侧支评分开发了神经网络。为每个减去三维体积的轴向和前后位(AP)视图的最大强度投影分别和一起作为网络输入,同时还使用了三维数据。采用 60:30:10 的训练:测试:验证分割和 20 次蒙特卡罗交叉验证迭代。使用准确度、敏感度、特异性、阳性预测值(PPV)和阴性预测值(NPV)的 95%置信区间评估网络性能。
轴向和 AP 输入组合为二分法分类提供了最准确的结果:准确度为 0.85±0.01;敏感度为 0.88±0.02;特异性为 0.82±0.03;PPV 为 0.86±0.02;NPV 为 0.83±0.03。同样,轴向和 AP 输入组合为多分类提供了最佳结果:准确度为 0.80±0.01;敏感度为 0.64±0.01;特异性为 0.85±0.01;PPV 为 0.65±0.02;NPV 为 0.85±0.01。
本研究报告了首批能够准确、高效评估 AIS 患者侧支血流的人工智能算法之一。这种用于确定侧支充盈的自动化方法可以简化临床工作流程,减少偏倚,并有助于临床决策,以确定适合再灌注的患者。