Suppr超能文献

利用影像生物标志物和机器学习预测脑出血血肿扩大的初步研究。

Initial investigation of predicting hematoma expansion for intracerebral hemorrhage using imaging biomarkers and machine learning.

作者信息

Swetz Dennis, Seymour Samantha E, Rava Ryan A, Shiraz Bhurwani Mohammad Mahdi, Monteiro Andre, Baig Ammad A, Waqas Muhammad, Snyder Kenneth V, Levy Elad I, Davies Jason M, Siddiqui Adnan H, Ionita Ciprian N

机构信息

Department of Biomedical Engineering, University at Buffalo, Buffalo NY 14228.

Canon Stroke and Vascular Research Center, Buffalo, NY 14203.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12036. doi: 10.1117/12.2610672. Epub 2022 Apr 4.

Abstract

PURPOSE

Intracerebral Hemorrhage (ICH) is one of the most devastating types of strokes with mortality and morbidity rates ranging from about 51%-65% one year after diagnosis. Early hematoma expansion (HE) is a known cause of worsening neurological status of ICH patients. The goal of this study was to investigate whether non-contrast computed tomography imaging biomarkers (NCCT-IB) acquired at initial presentation can predict ICH growth in the acute stage.

MATERIALS AND METHODS

We retrospectively collected NCCT data from 200 patients with acute (<6 hours) ICH. Four NCCT-IBs (blending region, dark hole, island, and edema) were identified for each hematoma, respectively. HE status was recorded based on the clinical observation reported in the patient chart. Supervised machine learning models were developed, trained, and tested for 15 different input combinations of the NCCT-IBs to predict HE. Model performance was assessed using area under the receiver operating characteristic curve and probability for accurate diagnosis () was calculated. A 20-fold Monte-Carlo cross validation was implemented to ensure model reliability on a limited sample size of data, by running a myriad of random training/testing splits.

RESULTS

The developed algorithm was able to predict expansion utilizing all four inputs with an accuracy of 70.17%. Further testing of all biomarker combinations yielded ranging from 0.57, to 0.70.

CONCLUSION

Specific attributes of ICHs may influence the likelihood of HE and can be evaluated via a machine learning algorithm. However, certain parameters may differ in importance to reach accurate conclusions about potential expansion.

摘要

目的

脑出血(ICH)是最具破坏性的中风类型之一,诊断后一年的死亡率和发病率约为51%-65%。早期血肿扩大(HE)是已知的脑出血患者神经功能恶化的原因。本研究的目的是调查初始就诊时获得的非增强计算机断层扫描成像生物标志物(NCCT-IB)是否可以预测急性期脑出血的增长。

材料与方法

我们回顾性收集了200例急性(<6小时)脑出血患者的NCCT数据。分别为每个血肿确定了四个NCCT-IB(混合区域、黑洞、岛状和水肿)。根据患者病历中报告的临床观察记录HE状态。开发、训练并测试了监督机器学习模型,用于15种不同的NCCT-IB输入组合以预测HE。使用受试者操作特征曲线下的面积评估模型性能,并计算准确诊断的概率()。通过进行大量随机训练/测试分割,实施了20倍蒙特卡洛交叉验证,以确保在有限的数据样本量上模型的可靠性。

结果

所开发的算法能够利用所有四个输入预测血肿扩大,准确率为70.17%。对所有生物标志物组合的进一步测试得出的范围为0.57至0.70。

结论

脑出血的特定属性可能影响血肿扩大的可能性,并且可以通过机器学习算法进行评估。然而,某些参数对于得出关于潜在扩大的准确结论可能具有不同的重要性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验