Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.
Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2104347118.
Late-stage anthrax infections are characterized by dysregulated immune responses and hematogenous spread of , leading to extreme bacteremia, sepsis, multiple organ failure, and, ultimately, death. Despite the bacterium being nonhemolytic, some fulminant anthrax patients develop a secondary atypical hemolytic uremic syndrome (aHUS) through unknown mechanisms. We recapitulated the pathology in baboons challenged with cell wall peptidoglycan (PGN), a polymeric, pathogen-associated molecular pattern responsible for the hemostatic dysregulation in anthrax sepsis. Similar to aHUS anthrax patients, PGN induces an initial hematocrit elevation followed by progressive hemolytic anemia and associated renal failure. Etiologically, PGN induces erythrolysis through direct excessive activation of all three complement pathways. Blunting terminal complement activation with a C5 neutralizing peptide prevented the progressive deposition of membrane attack complexes on red blood cells (RBC) and subsequent intravascular hemolysis, heme cytotoxicity, and acute kidney injury. Importantly, C5 neutralization did not prevent immune recognition of PGN and shifted the systemic inflammatory responses, consistent with improved survival in sepsis. Whereas PGN-induced hemostatic dysregulation was unchanged, C5 inhibition augmented fibrinolysis and improved the thromboischemic resolution. Overall, our study identifies PGN-driven complement activation as the pathologic mechanism underlying hemolytic anemia in anthrax and likely other gram-positive infections in which PGN is abundantly represented. Neutralization of terminal complement reactions reduces the hemolytic uremic pathology induced by PGN and could alleviate heme cytotoxicity and its associated kidney failure in gram-positive infections.
晚期炭疽感染的特征是免疫反应失调和血液传播,导致严重的菌血症、败血症、多器官衰竭,最终导致死亡。尽管该细菌是非溶血性的,但一些暴发性炭疽患者通过未知机制发展为继发性非典型溶血尿毒综合征(aHUS)。我们通过用细胞壁肽聚糖(PGN)挑战狒狒来再现病理学,PGN 是一种多聚体、病原体相关的分子模式,负责炭疽败血症中的止血失调。与 aHUS 炭疽患者类似,PGN 诱导初始血细胞比容升高,随后进行性溶血性贫血和相关肾衰竭。从病因学上讲,PGN 通过直接过度激活所有三种补体途径引起红细胞裂解。用 C5 中和肽阻断末端补体激活可防止补体攻击复合物在红细胞 (RBC) 上的进行性沉积,以及随后的血管内溶血、血红素细胞毒性和急性肾损伤。重要的是,C5 中和不会阻止 PGN 的免疫识别,并改变全身炎症反应,与败血症中的存活率提高一致。虽然 PGN 诱导的止血失调没有改变,但 C5 抑制增强了纤维蛋白溶解作用,改善了血栓性缺血的解决。总的来说,我们的研究确定了 PGN 驱动的补体激活是炭疽溶血性贫血的病理机制,可能还有其他革兰氏阳性感染中 PGN 大量存在。末端补体反应的中和减少了由 PGN 诱导的溶血尿毒综合征病理,并可能减轻革兰氏阳性感染中的血红素细胞毒性及其相关肾衰竭。