Yang Muer, Kumar Sameer, Wang Xinfang, Fry Michael J
Department of Operations and Supply Chain Management, Opus College of Business, University of St. Thomas, Minneapolis, MN 55403 USA.
Department of Enterprise Systems and Analytics, Parker College of Business, Georgia Southern University, P.O. Box 7998, Statesboro, GA 30460 USA.
Ann Oper Res. 2021 Sep 7:1-26. doi: 10.1007/s10479-021-04237-3.
The increasing vulnerability of the population from frequent disasters requires quick and effective responses to provide the required relief through effective humanitarian supply chain distribution networks. We develop scenario-robust optimization models for stocking multiple disaster relief items at strategic facility locations for disaster response. Our models improve the robustness of solutions by easing the difficult, and usually impossible, task of providing exact probability distributions for uncertain parameters in a stochastic programming model. Our models allow decision makers to specify uncertainty parameters (i.e., point and probability estimates) based on their degrees of knowledge, using distribution-free uncertainty sets in the form of ranges. The applicability of our generalized approach is illustrated via a case study of hurricane preparedness in the Southeastern United States. In addition, we conduct simulation studies to show the effectiveness of our approach when conditions deviate from the model assumptions.
由于频繁发生的灾害,民众的脆弱性日益增加,这就需要迅速而有效地做出反应,通过有效的人道主义供应链配送网络提供所需的救济。我们开发了情景稳健优化模型,用于在战略设施地点储备多种救灾物资以应对灾害。我们的模型通过减轻在随机规划模型中为不确定参数提供精确概率分布这一困难且通常不可能完成的任务,提高了解决方案的稳健性。我们的模型允许决策者根据他们的知识程度,使用范围形式的无分布不确定性集来指定不确定性参数(即点估计和概率估计)。通过对美国东南部飓风防备的案例研究,说明了我们广义方法的适用性。此外,我们进行了模拟研究,以展示我们的方法在条件偏离模型假设时的有效性。