Suppr超能文献

识别与癌症类型相对应的突变特征模式和规律。

Recognizing Pattern and Rule of Mutation Signatures Corresponding to Cancer Types.

作者信息

Chen Lei, Zhou Xianchao, Zeng Tao, Pan Xiaoyong, Zhang Yu-Hang, Huang Tao, Fang Zhaoyuan, Cai Yu-Dong

机构信息

School of Life Sciences, Shanghai University, Shanghai, China.

College of Information Engineering, Shanghai Maritime University, Shanghai, China.

出版信息

Front Cell Dev Biol. 2021 Aug 26;9:712931. doi: 10.3389/fcell.2021.712931. eCollection 2021.

Abstract

Cancer has been generally defined as a cluster of systematic malignant pathogenesis involving abnormal cell growth. Genetic mutations derived from environmental factors and inherited genetics trigger the initiation and progression of cancers. Although several well-known factors affect cancer, mutation features and rules that affect cancers are relatively unknown due to limited related studies. In this study, a computational investigation on mutation profiles of cancer samples in 27 types was given. These profiles were first analyzed by the Monte Carlo Feature Selection (MCFS) method. A feature list was thus obtained. Then, the incremental feature selection (IFS) method adopted such list to extract essential mutation features related to 27 cancer types, find out 207 mutation rules and construct efficient classifiers. The top 37 mutation features corresponding to different cancer types were discussed. All the qualitatively analyzed gene mutation features contribute to the distinction of different types of cancers, and most of such mutation rules are supported by recent literature. Therefore, our computational investigation could identify potential biomarkers and prediction rules for cancers in the mutation signature level.

摘要

癌症通常被定义为一组涉及异常细胞生长的系统性恶性病变。环境因素和遗传基因导致的基因突变引发癌症的发生和发展。尽管有几个广为人知的因素会影响癌症,但由于相关研究有限,影响癌症的突变特征和规律相对尚不明确。在本研究中,对27种癌症样本的突变谱进行了计算研究。这些谱首先通过蒙特卡罗特征选择(MCFS)方法进行分析。由此获得了一个特征列表。然后,增量特征选择(IFS)方法采用该列表来提取与27种癌症类型相关的基本突变特征,找出207条突变规律并构建高效分类器。讨论了对应不同癌症类型的前37个突变特征。所有定性分析的基因突变特征都有助于区分不同类型的癌症,并且大多数此类突变规律都得到了近期文献的支持。因此,我们的计算研究可以在突变特征水平上识别癌症的潜在生物标志物和预测规律。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1634/8427289/54ff9d506c0d/fcell-09-712931-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验