隐马尔可夫模型可提高癌症突变特征活动图谱的分辨率。

Hidden Markov models lead to higher resolution maps of mutation signature activity in cancer.

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, 20894, USA.

School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel.

出版信息

Genome Med. 2019 Jul 26;11(1):49. doi: 10.1186/s13073-019-0659-1.

Abstract

Knowing the activity of the mutational processes shaping a cancer genome may provide insight into tumorigenesis and personalized therapy. It is thus important to characterize the signatures of active mutational processes in patients from their patterns of single base substitutions. However, mutational processes do not act uniformly on the genome, leading to statistical dependencies among neighboring mutations. To account for such dependencies, we develop the first sequence-dependent model, SigMa, for mutation signatures. We apply SigMa to characterize genomic and other factors that influence the activity of mutation signatures in breast cancer. We show that SigMa outperforms previous approaches, revealing novel insights on signature etiology. The source code for SigMa is publicly available at https://github.com/lrgr/sigma.

摘要

了解塑造癌症基因组的突变过程的活性可能有助于深入了解肿瘤发生和个性化治疗。因此,从单碱基替换模式来描述患者中活跃的突变过程特征是很重要的。然而,突变过程在基因组上并不均匀作用,导致相邻突变之间存在统计相关性。为了解决这个问题,我们开发了第一个依赖于序列的突变特征模型 SigMa。我们应用 SigMa 来描述影响乳腺癌突变特征活性的基因组和其他因素。我们表明,SigMa 优于以前的方法,揭示了关于特征病因的新见解。SigMa 的源代码可在 https://github.com/lrgr/sigma 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d368/6660659/242ea3807507/13073_2019_659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索