Levy Sigal, Guttmann-Beck Nili, Shweiki Dorit
Statistics Education Unit, The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel.
Bioinformatics Program, School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel.
J Alzheimers Dis Rep. 2021 Jun 30;5(1):541-547. doi: 10.3233/ADR-210014. eCollection 2021.
The multiple appearance phenotypes in Alzheimer's disease (AD) are manifested in epidemiologic sexual dimorphism, variation in age of onset, progress, and severity of the disease.
In this study, we focused on sexual dimorphism, aiming to untie some of the complex interconnections in AD between sex, disease status, and gene expression profiles. Two strategic decisions guided our study: 1) to value transcriptomic multi-layered profiles over alterations in single genes expression; and 2) to embrace a sexual dimorphism centered approach, as we suspect that transcriptomic profiles may dramatically differ not only between healthy and sick individuals but between men and women as well.
Microarray dataset GSE15222, fulfilling our strict criteria, was retrieved from the GEO repository. We performed cluster analysis for each sex separately, comparing the proportion of healthy and AD individuals in each cluster.
We were able to identify a biased, female, AD-typified cluster. Furthermore, we showed that this female AD-typified cluster is highly similar to one of the male clusters. While the female cluster constitutes mostly sick individuals, the male cluster constitutes healthy and sick individuals in almost identical proportion.
Our results clearly indicate that similar transcriptomic profiles in the two sexes are "physiologically translated" in to a very different, dramatic outcome. Thus, our results suggest the need for a sex-based and transcriptomic profile-based study, for a better understanding of the onset and progression of AD.
阿尔茨海默病(AD)的多种表现型体现在流行病学上的性别差异、发病年龄、疾病进展和严重程度的变化。
在本研究中,我们聚焦于性别差异,旨在解开AD中性别、疾病状态和基因表达谱之间一些复杂的相互联系。有两个策略性决策指导我们的研究:1)重视转录组多层谱而非单个基因表达的改变;2)采用以性别差异为中心的方法,因为我们怀疑转录组谱不仅在健康个体和患病个体之间可能有显著差异,在男性和女性之间也可能如此。
从GEO数据库中检索符合我们严格标准的微阵列数据集GSE15222。我们分别对每个性别进行聚类分析,比较每个聚类中健康个体和AD个体的比例。
我们能够识别出一个有偏差的、以女性为主的AD典型聚类。此外,我们表明这个以女性为主的AD典型聚类与男性聚类之一高度相似。虽然女性聚类主要由患病个体组成,但男性聚类中健康个体和患病个体的比例几乎相同。
我们的结果清楚地表明,两性相似的转录组谱在“生理上转化”为非常不同的显著结果。因此,我们的结果表明需要进行基于性别的和基于转录组谱的研究,以更好地理解AD的发病和进展。