Suppr超能文献

概率学习与心理相似性

Probabilistic Learning and Psychological Similarity.

作者信息

Poth Nina

机构信息

Department of Philosophy, Berlin School of Mind & Brain, Humboldt University Berlin, 10099 Berlin, Germany.

Research Cluster of Excellence, Science of Intelligence, 10587 Berlin, Germany.

出版信息

Entropy (Basel). 2023 Sep 30;25(10):1407. doi: 10.3390/e25101407.

Abstract

The notions of psychological similarity and probabilistic learning are key posits in cognitive, computational, and developmental psychology and in machine learning. However, their explanatory relationship is rarely made explicit within and across these research fields. This opinionated review critically evaluates how these notions can mutually inform each other within computational cognitive science. Using probabilistic models of concept learning as a case study, I argue that two notions of psychological similarity offer important normative constraints to guide modelers' interpretations of representational primitives. In particular, the two notions furnish probabilistic models of cognition with meaningful interpretations of what the associated subjective probabilities in the model represent and how they attach to experiences from which the agent learns. Similarity representations thereby provide probabilistic models with cognitive, as opposed to purely mathematical, content.

摘要

心理相似性和概率学习的概念是认知心理学、计算心理学、发展心理学以及机器学习中的关键假设。然而,在这些研究领域内部和之间,它们的解释关系很少被明确阐述。这篇有倾向性的综述批判性地评估了这些概念如何在计算认知科学中相互提供信息。以概念学习的概率模型为例,我认为心理相似性的两个概念提供了重要的规范性约束,以指导建模者对表征原语的解释。特别是,这两个概念为认知概率模型提供了有意义的解释,说明模型中相关主观概率代表了什么,以及它们如何与主体学习的经验相关联。因此,相似性表征为概率模型提供了认知内容,而非仅仅是数学内容。

相似文献

1
Probabilistic Learning and Psychological Similarity.概率学习与心理相似性
Entropy (Basel). 2023 Sep 30;25(10):1407. doi: 10.3390/e25101407.
3
Exploring the Structure of Spatial Representations.探索空间表征的结构。
PLoS One. 2016 Jun 27;11(6):e0157343. doi: 10.1371/journal.pone.0157343. eCollection 2016.
4
Modeling Similarity and Psychological Space.建模相似性和心理空间。
Annu Rev Psychol. 2024 Jan 18;75:215-240. doi: 10.1146/annurev-psych-040323-115131. Epub 2023 Aug 10.
5
Neural representational geometry underlies few-shot concept learning.神经表象几何是少样本概念学习的基础。
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2200800119. doi: 10.1073/pnas.2200800119. Epub 2022 Oct 17.
7
A rational model of function learning.一种功能学习的合理模型。
Psychon Bull Rev. 2015 Oct;22(5):1193-215. doi: 10.3758/s13423-015-0808-5. Epub 2015 Mar 3.

本文引用的文献

1
Unification and explanation from a causal perspective.从因果关系的角度进行统一和解释。
Stud Hist Philos Sci. 2023 Jun;99:28-36. doi: 10.1016/j.shpsa.2022.12.005. Epub 2023 Mar 24.
3
Neural tuning and representational geometry.神经调谐与表象几何。
Nat Rev Neurosci. 2021 Nov;22(11):703-718. doi: 10.1038/s41583-021-00502-3. Epub 2021 Sep 14.
5
Learning How to Generalize.学习如何进行归纳。
Cogn Sci. 2019 Aug;43(8):e12777. doi: 10.1111/cogs.12777.
6
Graded similarity in free categorization.自由分类中的等级相似性。
Cognition. 2019 Sep;190:1-19. doi: 10.1016/j.cognition.2019.04.009. Epub 2019 Apr 22.
8
Still Suspicious: The Suspicious-Coincidence Effect Revisited.仍存疑虑:再探可疑巧合效应
Psychol Sci. 2018 Oct 15:956797618794931. doi: 10.1177/0956797618794931.
9
Delving Deeper Into Color Space.深入探究色彩空间
Iperception. 2018 Aug 23;9(4):2041669518792062. doi: 10.1177/2041669518792062. eCollection 2018 Jul-Aug.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验