Rehberg Markus, Giegerich Clemens, Praestgaard Amy, van Hoogstraten Hubert, Iglesias-Rodriguez Melitza, Curtis Jeffrey R, Gottenberg Jacques-Eric, Schwarting Andreas, Castañeda Santos, Rubbert-Roth Andrea, Choy Ernest H S
Sanofi, Frankfurt, Germany.
Sanofi, Cambridge, MA, USA.
Rheumatol Ther. 2021 Dec;8(4):1661-1675. doi: 10.1007/s40744-021-00361-5. Epub 2021 Sep 14.
In rheumatoid arthritis, time spent using ineffective medications may lead to irreversible disease progression. Despite availability of targeted treatments, only a minority of patients achieve sustained remission, and little evidence exists to direct the choice of biologic disease-modifying antirheumatic drugs in individual patients. Machine learning was used to identify a rule to predict the response to sarilumab and discriminate between responses to sarilumab versus adalimumab, with a focus on clinically feasible blood biomarkers.
The decision tree model GUIDE was trained using a data subset from the sarilumab trial with the most biomarker data, MOBILITY, to identify a rule to predict disease activity after sarilumab 200 mg. The training set comprised 18 categorical and 24 continuous baseline variables; some data were omitted from training and used for validation by the algorithm (cross-validation). The rule was tested using full datasets from four trials (MOBILITY, MONARCH, TARGET, and ASCERTAIN), focusing on the recommended sarilumab dose of 200 mg.
In the training set, the presence of anti-cyclic citrullinated peptide antibodies, combined with C-reactive protein > 12.3 mg/l, was identified as the "rule" that predicts American College of Rheumatology 20% response (ACR20) to sarilumab. In testing, the rule reliably predicted response to sarilumab in MOBILITY, MONARCH, and ASCERTAIN for many efficacy parameters (e.g., ACR70 and the 28-joint disease activity score using CRP [DAS28-CRP] remission). The rule applied less to TARGET, which recruited individuals refractory to tumor necrosis factor inhibitors. The potential clinical benefit of the rule was highlighted in a clinical scenario based on MONARCH data, which found that increased ACR70 rates could be achieved by treating either rule-positive patients with sarilumab or rule-negative patients with adalimumab.
Well-established and clinically feasible blood biomarkers can guide individual treatment choice. Real-world validation of the rule identified in this post hoc analysis is merited.
NCT01061736, NCT02332590, NCT01709578, NCT01768572.
在类风湿性关节炎中,使用无效药物的时间可能会导致疾病不可逆转地进展。尽管有靶向治疗药物,但只有少数患者能实现持续缓解,而且几乎没有证据可指导个体患者选择生物改善病情抗风湿药。机器学习被用于确定一条规则,以预测对沙瑞鲁单抗的反应,并区分对沙瑞鲁单抗与阿达木单抗的反应,重点关注临床可行的血液生物标志物。
决策树模型GUIDE使用来自沙瑞鲁单抗试验(拥有最多生物标志物数据的MOBILITY试验)的数据子集进行训练,以确定一条预测200毫克沙瑞鲁单抗治疗后疾病活动度的规则。训练集包含18个分类变量和24个连续的基线变量;部分数据被排除在训练之外,由算法用于验证(交叉验证)。该规则使用来自四项试验(MOBILITY、MONARCH、TARGET和ASCERTAIN)的完整数据集进行测试,重点关注推荐的200毫克沙瑞鲁单抗剂量。
在训练集中,抗环瓜氨酸肽抗体的存在,与C反应蛋白>12.3毫克/升相结合,被确定为预测对沙瑞鲁单抗的美国风湿病学会20%反应(ACR20)的“规则”。在测试中,该规则在MOBILITY、MONARCH和ASCERTAIN试验中,针对许多疗效参数(如ACR70以及使用C反应蛋白的28关节疾病活动评分[DAS28-CRP]缓解)可靠地预测了对沙瑞鲁单抗的反应。该规则在TARGET试验中的适用性较低,该试验招募的是对肿瘤坏死因子抑制剂耐药的个体。基于MONARCH数据的临床案例突出了该规则的潜在临床益处,该案例发现,通过用沙瑞鲁单抗治疗规则阳性患者或用阿达木单抗治疗规则阴性患者,可提高ACR70率。
成熟且临床可行的血液生物标志物可指导个体治疗选择。对该事后分析中确定的规则进行真实世界验证是有必要的。
NCT01061736、NCT02332590、NCT01709578、NCT01768572。