Lin Wenwei, Guo Wen-Ti, Yao Liquan, Li Jianmin, Lin Limei, Zhang Jian-Min, Chen Shuiyuan, Chen Guilin
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China.
ACS Appl Mater Interfaces. 2021 Sep 29;13(38):45726-45735. doi: 10.1021/acsami.1c12501. Epub 2021 Sep 14.
Hydrothermal deposition is emerging as a highly potential route for antimony-based solar cells, in which the Sb(S,Se) is typically in situ grown on a common toxic CdS buffer layer. The narrow band gap of CdS causes a considerable absorption in the short-wavelength region and then lowers the current density of the device. Herein, TiO is first evaluated as an alternative Cd-free buffer layer for hydrothermally derived SbS solar cells. But it suffers from a severely inhomogeneous SbS coverage, which is effectively eliminated by inserting a Zn(O,S) layer. The surface atom of sulfur in Zn(O,S) uniquely provides a chemical bridge to enable the quasi-epitaxial deposition of SbS thin film, confirming by both morphology and binding energy analysis using DFT. Then the results of the first-principles calculations also show that Zn(O,S)/SbS has a more stable structure than TiO/SbS. The resultant perfect Zn(O,S)/SbS junction, with a suitable band alignment and excellent interface contact, delivers a remarkably enhanced and for SbS solar cells. The device efficiency with the TiO/Zn(O,S) buffer layer boosts from 0.54% to 3.70% compared with the counterpart of TiO, which has a champion efficiency of Cd-free SbS solar cells with a structure of ITO/TiO/Zn(O,S)/SbS/Carbon/Ag by in situ hydrothermal deposition. This work provides a guideline for the hydrothermal deposition of antimony-based films upon a nontoxic buffer layer.
水热沉积正成为基于锑的太阳能电池极具潜力的制备途径,其中Sb(S,Se)通常在常见的有毒CdS缓冲层上原位生长。CdS的窄带隙导致在短波长区域有相当大的吸收,进而降低了器件的电流密度。在此,首次评估TiO作为水热法制备的SbS太阳能电池的无镉替代缓冲层。但它存在严重的SbS覆盖不均匀问题,通过插入Zn(O,S)层可有效消除这一问题。Zn(O,S)中硫的表面原子独特地提供了一个化学桥,以实现SbS薄膜的准外延沉积,这通过使用DFT的形貌和结合能分析得到证实。第一性原理计算结果还表明,Zn(O,S)/SbS比TiO/SbS具有更稳定的结构。由此形成的完美Zn(O,S)/SbS结,具有合适的能带排列和优异的界面接触,显著提高了SbS太阳能电池的开路电压和短路电流。与TiO对应物相比,采用TiO/Zn(O,S)缓冲层的器件效率从0.54%提高到3.70%,通过原位水热沉积制备的具有ITO/TiO/Zn(O,S)/SbS/碳/银结构的无镉SbS太阳能电池的最高效率为3.70%。这项工作为在无毒缓冲层上进行水热沉积锑基薄膜提供了指导。