Suppr超能文献

基于代表性邻居的异常检测。

Anomaly Detection With Representative Neighbors.

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Jun;34(6):2831-2841. doi: 10.1109/TNNLS.2021.3109898. Epub 2023 Jun 1.

Abstract

Identifying anomalies from data has attracted increasing attention in recent years due to its broad range of potential applications. Although many efforts have been made for anomaly detection, how to effectively handle high-dimensional data and how to exactly explore neighborhood information, a fundamental issue in anomaly detection, have not yet received sufficient concerns. To circumvent these challenges, in this article, we propose an effective anomaly detection method with representative neighbors for high-dimensional data. Specifically, it projects the high-dimensional data into a low-dimensional space via a sparse operation and explores representative neighbors with a self-representation learning technique. The neighborhood information is then transformed into similarity relations, making the data converge or disperse. Eventually, anomalies are discriminated by a tailored graph clustering technique, which can effectively reveal structural information of the data. Extensive experiments were conducted on ten public real-world datasets with 11 popular anomaly detection algorithms. The results show that the proposed method has encouraging and promising performance compared to the state-of-the-art anomaly detection algorithms.

摘要

近年来,由于其广泛的潜在应用,从数据中识别异常现象引起了越来越多的关注。尽管已经做出了许多努力来进行异常检测,但如何有效地处理高维数据以及如何准确地探索邻域信息,这是异常检测中的一个基本问题,尚未得到足够的关注。为了规避这些挑战,本文提出了一种具有代表性邻居的高效异常检测方法,用于高维数据。具体来说,它通过稀疏操作将高维数据投影到低维空间,并使用自表示学习技术探索具有代表性的邻居。然后,将邻域信息转换为相似关系,使数据聚集或分散。最后,通过专门设计的图聚类技术来区分异常,该技术可以有效地揭示数据的结构信息。在十个具有 11 种流行异常检测算法的公共真实世界数据集上进行了广泛的实验。结果表明,与最先进的异常检测算法相比,所提出的方法具有令人鼓舞和有前途的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验