Suppr超能文献

基于稀疏特征表示的少样本无监督视觉异常检测

Low-Shot Unsupervised Visual Anomaly Detection via Sparse Feature Representation.

作者信息

Zhang Fanghui, Zhu Haiyue, Cen Yigang, Kan Shichao, Zhang Linna, Vadakkepat Prahlad, Lee Tong Heng

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 May;36(5):7903-7917. doi: 10.1109/TNNLS.2024.3420818. Epub 2025 May 6.

Abstract

Visual anomaly detection is an essential component in modern industrial manufacturing. Existing studies using notions of pairwise similarity distance between a test feature and nominal features have achieved great breakthroughs. However, the absolute similarity distance lacks certain generalizations, making it challenging to extend the comparison beyond the available samples. This limitation could potentially hamper anomaly detection performance in scenarios with limited samples. This article presents a novel sparse feature representation anomaly detection (SFRAD) framework, which formulates the anomaly detection as a sparse feature representation problem; and notably proposes an anomaly score by orthogonal matching pursuit (ASOMP) as a novel detection metric. Specifically, SFRAD calculates the Gaussian kernel distance between the test feature and its sparse representation in the nominal feature space for anomaly detection. Here, the orthogonal matching pursuit (OMP) algorithm is adopted to achieve the sparse feature representation. Moreover, to construct a low-redundancy memory bank storing the basis features for sparse representation, a novel basis feature sampling (BFS) algorithm is proposed by considering both the maximum coverage and the optimum feature representation simultaneously. As a result, SFRAD incorporates both the advantages of absolute similarity and linear representation; and this enhances the generalization in low-shot scenarios. Extensive experiments on the MVTec anomaly detection (MVTec AD), Kolektor surface-defect dataset (KolektorSDD), Kolektor surface-defect dataset 2 (KolektorSDD2), MVTec logical constraints anomaly detection (MVTec LOCO AD), Visual anomaly (VISA), Modified national institute of standards and technology (MNIST), and CIFAR-10 datasets demonstrate that our proposed SFRAD outperforms the previous methods and achieves state-of-the-art unsupervised anomaly detection performance. Notably, significantly improved outcomes and results have also been achieved on low-shot anomaly detection. Code is available at https://github.com/fanghuisky/SFRAD.

摘要

视觉异常检测是现代工业制造中的一个重要组成部分。现有的利用测试特征与标称特征之间成对相似性距离概念的研究已经取得了重大突破。然而,绝对相似性距离缺乏一定的通用性,使得在可用样本之外进行比较具有挑战性。这种限制可能会在样本有限的场景中阻碍异常检测性能。本文提出了一种新颖的稀疏特征表示异常检测(SFRAD)框架,该框架将异常检测表述为一个稀疏特征表示问题;并特别提出了一种基于正交匹配追踪的异常分数(ASOMP)作为一种新颖的检测指标。具体而言,SFRAD通过计算测试特征与其在标称特征空间中的稀疏表示之间的高斯核距离来进行异常检测。这里,采用正交匹配追踪(OMP)算法来实现稀疏特征表示。此外,为了构建一个存储用于稀疏表示的基础特征的低冗余内存库,通过同时考虑最大覆盖和最优特征表示,提出了一种新颖的基础特征采样(BFS)算法。结果,SFRAD融合了绝对相似性和线性表示的优点;这增强了在少样本场景中的通用性。在MVTec异常检测(MVTec AD)、Kolektor表面缺陷数据集(KolektorSDD)、Kolektor表面缺陷数据集2(KolektorSDD2)、MVTec逻辑约束异常检测(MVTec LOCO AD)、视觉异常(VISA)、修改后的国家标准与技术研究所(MNIST)以及CIFAR-10数据集上进行的大量实验表明,我们提出的SFRAD优于先前的方法,并实现了当前最优的无监督异常检测性能。值得注意的是,在少样本异常检测方面也取得了显著改善的结果。代码可在https://github.com/fanghuisky/SFRAD获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验