Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, United States of America.
Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, United States of America.
Toxicol Appl Pharmacol. 2021 Nov 1;430:115724. doi: 10.1016/j.taap.2021.115724. Epub 2021 Sep 11.
Cadmium (Cd) is a toxic heavy metal and one of carcinogens that cause lung cancer. However, the exact mechanism of Cd carcinogenesis remains unclear. To investigate the mechanism of Cd carcinogenesis, we exposed human bronchial epithelial cells (BEAS-2B) to a low dose of Cd (2.5 μM, CdCl) for 9 months, which caused cell malignant transformation and generated cancer stem cell (CSC)-like cells. The goal of this study is to investigate the underlying mechanism. The long non-coding RNA (lncRNA) microarray analysis showed that the expression level of a tumor suppressive lncRNA maternally expressed 3 (MEG3) is significantly down-regulated in Cd-transformed cells, which is confirmed by further q-PCR analysis. Mechanistically, it was found that chronic Cd exposure up-regulates the levels of DNA methyltransferases (DNMTs), which increases the methylation of the differentially methylated region (DMR) 1.5 kb upstream of MEG3 transcription start site to reduce MEG3 expression. Functional studies showed that stably overexpressing MEG3 in Cd-transformed cells significantly reduces their transformed phenotypes. Moreover, stably overexpressing MEG3 in parental non-transformed human bronchial epithelial cells significantly impaired the capability of chronic Cd exposure to induce cell transformation and CSC-like property. Further mechanistic studies revealed that the cell cycle inhibitor p21 level is reduced and retinoblastoma protein (Rb) phosphorylation is increased in Cd-transformed cells to promote cell cycle progression. In addition, Cd-transformed cells also expressed higher levels of Bcl-xL and displayed apoptosis resistance. In contrast, stably overexpressing MEG3 increased p21 levels and reduced Rb phosphorylation and Bcl-xL levels in Cd-exposed cells and reduced their cell cycle progression and apoptosis resistance. Together, these findings suggest that MEG3 down-regulation may play important roles in Cd-induced cell transformation and CSC-like property by promoting cell cycle progression and apoptosis resistance.
镉(Cd)是一种有毒重金属,也是导致肺癌的致癌物之一。然而,镉致癌的确切机制尚不清楚。为了研究镉致癌的机制,我们将人支气管上皮细胞(BEAS-2B)暴露于低剂量的镉(2.5μM,CdCl)中 9 个月,导致细胞恶性转化并产生癌症干细胞(CSC)样细胞。本研究的目的是探讨其潜在机制。长链非编码 RNA(lncRNA)微阵列分析显示,Cd 转化细胞中肿瘤抑制性 lncRNA 母系表达 3(MEG3)的表达水平显著下调,进一步的 q-PCR 分析证实了这一点。从机制上讲,研究发现慢性 Cd 暴露会上调 DNA 甲基转移酶(DNMTs)的水平,从而增加 MEG3 转录起始位点上游 1.5kb 差异甲基化区域(DMR)的甲基化程度,降低 MEG3 的表达。功能研究表明,在 Cd 转化细胞中稳定过表达 MEG3 可显著降低其转化表型。此外,在未转化的人支气管上皮细胞中稳定过表达 MEG3 可显著削弱慢性 Cd 暴露诱导细胞转化和 CSC 样特性的能力。进一步的机制研究表明,Cd 转化细胞中的细胞周期抑制剂 p21 水平降低,视网膜母细胞瘤蛋白(Rb)磷酸化增加,从而促进细胞周期进程。此外,Cd 转化细胞还表达更高水平的 Bcl-xL,并表现出抗凋亡性。相反,在 Cd 暴露的细胞中稳定过表达 MEG3 会增加 p21 水平,降低 Rb 磷酸化和 Bcl-xL 水平,从而降低细胞周期进程和抗凋亡性。综上所述,MEG3 的下调可能通过促进细胞周期进程和抗凋亡性,在 Cd 诱导的细胞转化和 CSC 样特性中发挥重要作用。