Suppr超能文献

遗传筛选揭示了磷脂代谢是氧化还原活性脂质辅酶 Q 生物合成的关键调节剂。

Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q.

机构信息

Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia.

Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia; Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.

出版信息

Redox Biol. 2021 Oct;46:102127. doi: 10.1016/j.redox.2021.102127. Epub 2021 Sep 8.

Abstract

Mitochondrial energy production and function rely on optimal concentrations of the essential redox-active lipid, coenzyme Q (CoQ). CoQ deficiency results in mitochondrial dysfunction associated with increased mitochondrial oxidative stress and a range of pathologies. What drives CoQ deficiency in many of these pathologies is unknown, just as there currently is no effective therapeutic strategy to overcome CoQ deficiency in humans. To date, large-scale studies aimed at systematically interrogating endogenous systems that control CoQ biosynthesis and their potential utility to treat disease have not been carried out. Therefore, we developed a quantitative high-throughput method to determine CoQ concentrations in yeast cells. Applying this method to the Yeast Deletion Collection as a genome-wide screen, 30 genes not known previously to regulate cellular concentrations of CoQ were discovered. In combination with untargeted lipidomics and metabolomics, phosphatidylethanolamine N-methyltransferase (PEMT) deficiency was confirmed as a positive regulator of CoQ synthesis, the first identified to date. Mechanistically, PEMT deficiency alters mitochondrial concentrations of one-carbon metabolites, characterized by an increase in the S-adenosylmethionine to S-adenosylhomocysteine (SAM-to-SAH) ratio that reflects mitochondrial methylation capacity, drives CoQ synthesis, and is associated with a decrease in mitochondrial oxidative stress. The newly described regulatory pathway appears evolutionary conserved, as ablation of PEMT using antisense oligonucleotides increases mitochondrial CoQ in mouse-derived adipocytes that translates to improved glucose utilization by these cells, and protection of mice from high-fat diet-induced insulin resistance. Our studies reveal a previously unrecognized relationship between two spatially distinct lipid pathways with potential implications for the treatment of CoQ deficiencies, mitochondrial oxidative stress/dysfunction, and associated diseases.

摘要

线粒体的能量产生和功能依赖于必需的氧化还原活性脂质辅酶 Q(CoQ)的最佳浓度。CoQ 缺乏会导致与线粒体氧化应激增加和多种病理相关的线粒体功能障碍。在许多这些病理中,导致 CoQ 缺乏的原因尚不清楚,就像目前还没有有效的治疗策略来克服人类的 CoQ 缺乏一样。迄今为止,尚未开展旨在系统研究控制 CoQ 生物合成的内源性系统及其在治疗疾病方面的潜在用途的大规模研究。因此,我们开发了一种定量高通量方法来确定酵母细胞中的 CoQ 浓度。将这种方法应用于酵母缺失文库作为全基因组筛选,发现了 30 个以前未知的调节细胞 CoQ 浓度的基因。与非靶向脂质组学和代谢组学相结合,证实了磷酸乙醇胺 N-甲基转移酶(PEMT)缺乏是 CoQ 合成的正调节剂,这是迄今为止发现的第一个。从机制上讲,PEMT 缺乏会改变一碳代谢物的线粒体浓度,其特征是 S-腺苷甲硫氨酸到 S-腺苷同型半胱氨酸(SAM-to-SAH)的比值增加,反映了线粒体甲基化能力,从而驱动 CoQ 合成,并与线粒体氧化应激的降低有关。新描述的调节途径似乎在进化上是保守的,因为使用反义寡核苷酸消除 PEMT 会增加小鼠来源的脂肪细胞中的线粒体 CoQ,这转化为这些细胞更好地利用葡萄糖,并保护小鼠免受高脂肪饮食引起的胰岛素抵抗。我们的研究揭示了两个空间上不同的脂质途径之间以前未被认识到的关系,这可能对 CoQ 缺乏、线粒体氧化应激/功能障碍和相关疾病的治疗具有潜在意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2044/8435697/6a510bb86e92/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验